These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 34364604)

  • 1. High-performance green electronic substrate employing flexible and transparent cellulose films.
    Sun Y; Chen D; Li Y; Sun S; Zheng J; Cui J; Wang G; Zheng L; Wang Y; Zhou H
    Carbohydr Polym; 2021 Oct; 270():118359. PubMed ID: 34364604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Covalent immobilization of cellulose layers onto maleic anhydride copolymer thin films.
    Freudenberg U; Zschoche S; Simon F; Janke A; Schmidt K; Behrens SH; Auweter H; Werner C
    Biomacromolecules; 2005; 6(3):1628-34. PubMed ID: 15877387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly transparent, weakly hydrophilic and biodegradable cellulose film for flexible electroluminescent devices.
    Tong R; Chen G; Tian J; He M
    Carbohydr Polym; 2020 Jan; 227():115366. PubMed ID: 31590867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of regenerated cellulose/halloysite nanotube bionanocomposite films with ionic liquid.
    Soheilmoghaddam M; Wahit MU
    Int J Biol Macromol; 2013 Jul; 58():133-9. PubMed ID: 23567285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical modification of cellulose by in situ reactive extrusion in ionic liquid.
    Zhang Y; Li H; Li X; Gibril ME; Yu M
    Carbohydr Polym; 2014 Jan; 99():126-31. PubMed ID: 24274488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Thermally Stable, Green Solvent Disintegrable, and Recyclable Polymer Substrates for Flexible Electronics.
    Chen L; Yu H; Dirican M; Fang D; Tian Y; Yan C; Xie J; Jia D; Liu H; Wang J; Tang F; Zhang X; Tao J
    Macromol Rapid Commun; 2020 Oct; 41(19):e2000292. PubMed ID: 32833274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure reorganization of cellulose hydrogel by green solvent exchange for potential plastic replacement.
    Shu L; Zhang XF; Wang Z; Yao J
    Carbohydr Polym; 2022 Jan; 275():118695. PubMed ID: 34742422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and Characterization of κ-Carrageenan Modified with Maleic Anhydride and Its Application in Films.
    Zhou Y; Chen FQ; Chen S; Xiao Q; Weng HF; Yang QM; Xiao AF
    Mar Drugs; 2021 Aug; 19(9):. PubMed ID: 34564148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microcrystalline-cellulose and polypropylene based composite: A simple, selective and effective material for microwavable packaging.
    Ummartyotin S; Pechyen C
    Carbohydr Polym; 2016 May; 142():133-40. PubMed ID: 26917383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stretchable and transparent alginate ionic gel film for multifunctional sensors and devices.
    Tong R; Ma Z; Yao R; Gu P; Li T; Liu L; Guo F; Zeng M; Xu J
    Int J Biol Macromol; 2023 Aug; 246():125667. PubMed ID: 37406908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Double-crosslinked cellulose nanofiber based bioplastic films for practical applications.
    Lee K; Jeon Y; Kim D; Kwon G; Kim UJ; Hong C; Choung JW; You J
    Carbohydr Polym; 2021 May; 260():117817. PubMed ID: 33712161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA.
    Zhou C; Shi Q; Guo W; Terrell L; Qureshi AT; Hayes DJ; Wu Q
    ACS Appl Mater Interfaces; 2013 May; 5(9):3847-54. PubMed ID: 23590943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile in situ fabrication of ZnO-embedded cellulose nanocomposite films with antibacterial properties and enhanced mechanical strength via hydrogen bonding interactions.
    Li X; Li H; Wang X; Xu D; You T; Wu Y; Xu F
    Int J Biol Macromol; 2021 Jul; 183():760-771. PubMed ID: 33932418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Efficient Gas-Phase Oxidation of Renewable Furfural to Maleic Anhydride over Plate Vanadium Phosphorus Oxide Catalyst.
    Li X; Ko J; Zhang Y
    ChemSusChem; 2018 Feb; 11(3):612-618. PubMed ID: 29243400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved thermal stability of regenerated cellulose films from corn (Zea mays) stalk pith using facile preparation with low-concentration zinc chloride dissolving.
    Zhang H; Chen K; Gao X; Han Q; Peng L
    Carbohydr Polym; 2019 Aug; 217():190-198. PubMed ID: 31079676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maleic anhydride and acetylene plasma copolymer surfaces for SPR immunosensing.
    Makhneva E; Farka Z; Pastucha M; Obrusník A; Horáčková V; Skládal P; Zajíčková L
    Anal Bioanal Chem; 2019 Nov; 411(29):7689-7697. PubMed ID: 31250063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical cross-linked polyvinyl alcohol/cellulose nanocrystal composite films with high structural stability by spraying Fenton reagent as initiator.
    Song M; Yu H; Gu J; Ye S; Zhou Y
    Int J Biol Macromol; 2018 Jul; 113():171-178. PubMed ID: 29471093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical properties and antioxidant capacity of chitosan/epigallocatechin-3-gallate films reinforced with nano-bacterial cellulose.
    Wang X; Xie Y; Ge H; Chen L; Wang J; Zhang S; Guo Y; Li Z; Feng X
    Carbohydr Polym; 2018 Jan; 179():207-220. PubMed ID: 29111045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Green route to modification of wood waste, cellulose and hemicellulose using reactive extrusion.
    Vaidya AA; Gaugler M; Smith DA
    Carbohydr Polym; 2016 Jan; 136():1238-50. PubMed ID: 26572467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties and bioapplications of blended cellulose and corn protein films.
    Yang Q; Lue A; Qi H; Sun Y; Zhang X; Zhang L
    Macromol Biosci; 2009 Sep; 9(9):849-56. PubMed ID: 19384976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.