These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 34364629)
1. Valorization of Miscanthus × giganteus by γ-Valerolactone/H Ding D; Hu J; Hui L; Liu Z; Shao L Carbohydr Polym; 2021 Oct; 270():118388. PubMed ID: 34364629 [TBL] [Abstract][Full Text] [Related]
2. Production of furfural from xylose, xylan and corncob in gamma-valerolactone using FeCl3·6H2O as catalyst. Zhang L; Yu H; Wang P; Li Y Bioresour Technol; 2014 Jan; 151():355-60. PubMed ID: 24262845 [TBL] [Abstract][Full Text] [Related]
3. Effects of γ-Valerolactone/H Luo Y; Li Z; Zuo Y; Su Z; Hu C J Agric Food Chem; 2018 Jun; 66(24):6094-6103. PubMed ID: 29799753 [TBL] [Abstract][Full Text] [Related]
4. Synthesis of sulfonated lignin-derived ordered mesoporous carbon for catalytic production of furfural from xylose. Wang X; Qiu M; Tang Y; Yang J; Shen F; Qi X; Yu Y Int J Biol Macromol; 2021 Sep; 187():232-239. PubMed ID: 34314791 [TBL] [Abstract][Full Text] [Related]
5. Conversion of xylan, d-xylose and lignocellulosic biomass into furfural using AlCl3 as catalyst in ionic liquid. Zhang L; Yu H; Wang P; Dong H; Peng X Bioresour Technol; 2013 Feb; 130():110-6. PubMed ID: 23306118 [TBL] [Abstract][Full Text] [Related]
6. Synthesis of furfural from xylose, xylan, and biomass using AlCl3·6H2O in biphasic media via xylose isomerization to xylulose. Yang Y; Hu CW; Abu-Omar MM ChemSusChem; 2012 Feb; 5(2):405-10. PubMed ID: 22315196 [TBL] [Abstract][Full Text] [Related]
7. A novel mineral-acid free biphasic deep eutectic solvent/γ-valerolactone system for furfural production and boosting the enzymatic hydrolysis of lignocellulosic biomass. Cheng J; Huang C; Zhan Y; Liu X; Wang J; Huang C; Fang G; Ragauskas AJ; Xie Z; Meng X Bioresour Technol; 2023 Nov; 387():129653. PubMed ID: 37573979 [TBL] [Abstract][Full Text] [Related]
8. Direct transformation of xylan-type hemicelluloses to furfural via SnCl₄ catalysts in aqueous and biphasic systems. Wang W; Ren J; Li H; Deng A; Sun R Bioresour Technol; 2015 May; 183():188-94. PubMed ID: 25742750 [TBL] [Abstract][Full Text] [Related]
9. A catalytic biofuel production strategy involving separate conversion of hemicellulose and cellulose using 2-sec-butylphenol (SBP) and lignin-derived (LD) alkylphenol solvents. Kim S; Han J Bioresour Technol; 2016 Mar; 204():1-8. PubMed ID: 26765845 [TBL] [Abstract][Full Text] [Related]
10. Insight into Aluminum Sulfate-Catalyzed Xylan Conversion into Furfural in a γ-Valerolactone/Water Biphasic Solvent under Microwave Conditions. Yang T; Zhou YH; Zhu SZ; Pan H; Huang YB ChemSusChem; 2017 Oct; 10(20):4066-4079. PubMed ID: 28856818 [TBL] [Abstract][Full Text] [Related]
11. Improving saccharification efficiency of corn stover through ferric chloride-deep eutectic solvent pretreatment. Zhang D; Liu J; Xu H; Liu H; He YC Bioresour Technol; 2024 May; 399():130579. PubMed ID: 38479628 [TBL] [Abstract][Full Text] [Related]
12. Exploration of deep eutectic solvent-based biphasic system for furfural production and enhancing enzymatic hydrolysis: Chemical, topochemical, and morphological changes. Sun LL; Yue Z; Sun SC; Sun SN; Cao XF; Yuan TQ; Wen JL Bioresour Technol; 2022 May; 352():127074. PubMed ID: 35346816 [TBL] [Abstract][Full Text] [Related]
13. Valorization of bamboo by γ-valerolactone/acid/water to produce digestible cellulose, degraded sugars and lignin. Li SX; Li MF; Yu P; Fan YM; Shou JN; Sun RC Bioresour Technol; 2017 Apr; 230():90-96. PubMed ID: 28161625 [TBL] [Abstract][Full Text] [Related]
14. Combination of solid acid and solvent pretreatment for co-production of furfural, xylooligosaccharide and reducing sugars from Phyllostachys edulis. Yang Q; Fan B; He YC Bioresour Technol; 2024 Mar; 395():130398. PubMed ID: 38286168 [TBL] [Abstract][Full Text] [Related]
15. FeCl3 and acetic acid co-catalyzed hydrolysis of corncob for improving furfural production and lignin removal from residue. Mao L; Zhang L; Gao N; Li A Bioresour Technol; 2012 Nov; 123():324-31. PubMed ID: 22940337 [TBL] [Abstract][Full Text] [Related]
16. Conversion of xylose into furfural using lignosulfonic acid as catalyst in ionic liquid. Wu C; Chen W; Zhong L; Peng X; Sun R; Fang J; Zheng S J Agric Food Chem; 2014 Jul; 62(30):7430-5. PubMed ID: 25007384 [TBL] [Abstract][Full Text] [Related]
17. Conversion of waste lignocellulose to furfural using sulfonated carbon microspheres as catalyst. Li X; Lu X; Liang M; Xu R; Yu Z; Duan B; Lu L; Si C Waste Manag; 2020 May; 108():119-126. PubMed ID: 32353776 [TBL] [Abstract][Full Text] [Related]
18. Chemical Pretreatment-Independent Saccharifications of Xylan and Cellulose of Rice Straw by Bacterial Weak Lignin-Binding Xylanolytic and Cellulolytic Enzymes. Teeravivattanakit T; Baramee S; Phitsuwan P; Sornyotha S; Waeonukul R; Pason P; Tachaapaikoon C; Poomputsa K; Kosugi A; Sakka K; Ratanakhanokchai K Appl Environ Microbiol; 2017 Nov; 83(22):. PubMed ID: 28864653 [TBL] [Abstract][Full Text] [Related]
19. Efficient biomass pretreatment using ionic liquids derived from lignin and hemicellulose. Socha AM; Parthasarathi R; Shi J; Pattathil S; Whyte D; Bergeron M; George A; Tran K; Stavila V; Venkatachalam S; Hahn MG; Simmons BA; Singh S Proc Natl Acad Sci U S A; 2014 Sep; 111(35):E3587-95. PubMed ID: 25136131 [TBL] [Abstract][Full Text] [Related]
20. Conversion of corn stalk into furfural using a novel heterogeneous strong acid catalyst in γ-valerolactone. Xu Z; Li W; Du Z; Wu H; Jameel H; Chang HM; Ma L Bioresour Technol; 2015 Dec; 198():764-71. PubMed ID: 26454364 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]