BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 34365114)

  • 1. Learning from the brain's architecture: bioinspired strategies towards implantable neural interfaces.
    Rommelfanger NJ; Keck CH; Chen Y; Hong G
    Curr Opin Biotechnol; 2021 Dec; 72():8-12. PubMed ID: 34365114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioinspired Materials for
    Woods GA; Rommelfanger NJ; Hong G
    Matter; 2020 Oct; 3(4):1087-1113. PubMed ID: 33103115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioinspired neuron-like electronics.
    Yang X; Zhou T; Zwang TJ; Hong G; Zhao Y; Viveros RD; Fu TM; Gao T; Lieber CM
    Nat Mater; 2019 May; 18(5):510-517. PubMed ID: 30804509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How is flexible electronics advancing neuroscience research?
    Chen Y; Rommelfanger NJ; Mahdi AI; Wu X; Keene ST; Obaid A; Salleo A; Wang H; Hong G
    Biomaterials; 2021 Jan; 268():120559. PubMed ID: 33310538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioinspired flexible electronics for seamless neural interfacing and chronic recording.
    Li H; Wang J; Fang Y
    Nanoscale Adv; 2020 Aug; 2(8):3095-3102. PubMed ID: 36134275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Future of Neural Interfaces.
    Laiwalla F; Nurmikko A
    Adv Exp Med Biol; 2019; 1101():225-241. PubMed ID: 31729678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 512-channels, whole array readout, CMOS implantable probe for acute recordings from the brain.
    Angotzi GN; Malerba M; Zucca S; Berdondini L
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():877-80. PubMed ID: 26736402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organic Synapses for Neuromorphic Electronics: From Brain-Inspired Computing to Sensorimotor Nervetronics.
    Lee Y; Lee TW
    Acc Chem Res; 2019 Apr; 52(4):964-974. PubMed ID: 30896916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Syringe-injectable Mesh Electronics for Stable Chronic Rodent Electrophysiology.
    Schuhmann TG; Zhou T; Hong G; Lee JM; Fu TM; Park HG; Lieber CM
    J Vis Exp; 2018 Jul; (137):. PubMed ID: 30080192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible and Implantable Microelectrodes for Chronically Stable Neural Interfaces.
    Shi J; Fang Y
    Adv Mater; 2019 Nov; 31(45):e1804895. PubMed ID: 30300442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly scalable multichannel mesh electronics for stable chronic brain electrophysiology.
    Fu TM; Hong G; Viveros RD; Zhou T; Lieber CM
    Proc Natl Acad Sci U S A; 2017 Nov; 114(47):E10046-E10055. PubMed ID: 29109247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatially expandable fiber-based probes as a multifunctional deep brain interface.
    Jiang S; Patel DC; Kim J; Yang S; Mills WA; Zhang Y; Wang K; Feng Z; Vijayan S; Cai W; Wang A; Guo Y; Kimbrough IF; Sontheimer H; Jia X
    Nat Commun; 2020 Nov; 11(1):6115. PubMed ID: 33257708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue-like Neural Probes for Understanding and Modulating the Brain.
    Hong G; Viveros RD; Zwang TJ; Yang X; Lieber CM
    Biochemistry; 2018 Jul; 57(27):3995-4004. PubMed ID: 29529359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Event-driven implementation of deep spiking convolutional neural networks for supervised classification using the SpiNNaker neuromorphic platform.
    Patiño-Saucedo A; Rostro-Gonzalez H; Serrano-Gotarredona T; Linares-Barranco B
    Neural Netw; 2020 Jan; 121():319-328. PubMed ID: 31590013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward the Next Generation of Neural Iontronic Interfaces.
    Forró C; Musall S; Montes VR; Linkhorst J; Walter P; Wessling M; Offenhäusser A; Ingebrandt S; Weber Y; Lampert A; Santoro F
    Adv Healthc Mater; 2023 Aug; 12(20):e2301055. PubMed ID: 37434349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mesh Nanoelectronics: Seamless Integration of Electronics with Tissues.
    Dai X; Hong G; Gao T; Lieber CM
    Acc Chem Res; 2018 Feb; 51(2):309-318. PubMed ID: 29381054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A method for compression of intra-cortically-recorded neural signals dedicated to implantable brain-machine interfaces.
    Shaeri MA; Sodagar AM
    IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):485-97. PubMed ID: 25222949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implantable Neural Interfaces and Wearable Tactile Systems for Bidirectional Neuroprosthetics Systems.
    Cutrone A; Micera S
    Adv Healthc Mater; 2019 Dec; 8(24):e1801345. PubMed ID: 31763784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coating flexible probes with an ultra fast degrading polymer to aid in tissue insertion.
    Lo MC; Wang S; Singh S; Damodaran VB; Kaplan HM; Kohn J; Shreiber DI; Zahn JD
    Biomed Microdevices; 2015 Apr; 17(2):34. PubMed ID: 25681971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elastocapillary self-assembled neurotassels for stable neural activity recordings.
    Guan S; Wang J; Gu X; Zhao Y; Hou R; Fan H; Zou L; Gao L; Du M; Li C; Fang Y
    Sci Adv; 2019 Mar; 5(3):eaav2842. PubMed ID: 30944856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.