BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 34365142)

  • 41. Semi Supervised Learning with Deep Embedded Clustering for Image Classification and Segmentation.
    Enguehard J; O'Halloran P; Gholipour A
    IEEE Access; 2019; 7():11093-11104. PubMed ID: 31588387
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Large scale tissue histopathology image classification, segmentation, and visualization via deep convolutional activation features.
    Xu Y; Jia Z; Wang LB; Ai Y; Zhang F; Lai M; Chang EI
    BMC Bioinformatics; 2017 May; 18(1):281. PubMed ID: 28549410
    [TBL] [Abstract][Full Text] [Related]  

  • 43. GREnet: Gradually REcurrent Network With Curriculum Learning for 2-D Medical Image Segmentation.
    Wang J; Tang Y; Xiao Y; Zhou JT; Fang Z; Yang F
    IEEE Trans Neural Netw Learn Syst; 2023 Jan; PP():. PubMed ID: 37022080
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Non-equivalent images and pixels: Confidence-aware resampling with meta-learning mixup for polyp segmentation.
    Guo X; Chen Z; Liu J; Yuan Y
    Med Image Anal; 2022 May; 78():102394. PubMed ID: 35219939
    [TBL] [Abstract][Full Text] [Related]  

  • 45. ARPM-net: A novel CNN-based adversarial method with Markov random field enhancement for prostate and organs at risk segmentation in pelvic CT images.
    Zhang Z; Zhao T; Gay H; Zhang W; Sun B
    Med Phys; 2021 Jan; 48(1):227-237. PubMed ID: 33151620
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Weakly supervised mitosis detection in breast histopathology images using concentric loss.
    Li C; Wang X; Liu W; Latecki LJ; Wang B; Huang J
    Med Image Anal; 2019 Apr; 53():165-178. PubMed ID: 30798116
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Anatomical Attention Guided Deep Networks for ROI Segmentation of Brain MR Images.
    Sun L; Shao W; Zhang D; Liu M
    IEEE Trans Med Imaging; 2020 Jun; 39(6):2000-2012. PubMed ID: 31899417
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Introducing frequency representation into convolution neural networks for medical image segmentation via twin-Kernel Fourier convolution.
    Tang X; Peng J; Zhong B; Li J; Yan Z
    Comput Methods Programs Biomed; 2021 Jun; 205():106110. PubMed ID: 33910149
    [TBL] [Abstract][Full Text] [Related]  

  • 49. ICL-Net: Global and Local Inter-Pixel Correlations Learning Network for Skin Lesion Segmentation.
    Cao W; Yuan G; Liu Q; Peng C; Xie J; Yang X; Ni X; Zheng J
    IEEE J Biomed Health Inform; 2023 Jan; 27(1):145-156. PubMed ID: 35353708
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hippocampal subfields segmentation in brain MR images using generative adversarial networks.
    Shi Y; Cheng K; Liu Z
    Biomed Eng Online; 2019 Jan; 18(1):5. PubMed ID: 30665408
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Joint fully convolutional and graph convolutional networks for weakly-supervised segmentation of pathology images.
    Zhang J; Hua Z; Yan K; Tian K; Yao J; Liu E; Liu M; Han X
    Med Image Anal; 2021 Oct; 73():102183. PubMed ID: 34340108
    [TBL] [Abstract][Full Text] [Related]  

  • 52. MetricUNet: Synergistic image- and voxel-level learning for precise prostate segmentation via online sampling.
    He K; Lian C; Adeli E; Huo J; Gao Y; Zhang B; Zhang J; Shen D
    Med Image Anal; 2021 Jul; 71():102039. PubMed ID: 33831595
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tumor attention networks: Better feature selection, better tumor segmentation.
    Pang S; Du A; Orgun MA; Wang Y; Yu Z
    Neural Netw; 2021 Aug; 140():203-222. PubMed ID: 33780873
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images.
    Orlando N; Gillies DJ; Gyacskov I; Romagnoli C; D'Souza D; Fenster A
    Med Phys; 2020 Jun; 47(6):2413-2426. PubMed ID: 32166768
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Catheter segmentation in X-ray fluoroscopy using synthetic data and transfer learning with light U-nets.
    Gherardini M; Mazomenos E; Menciassi A; Stoyanov D
    Comput Methods Programs Biomed; 2020 Aug; 192():105420. PubMed ID: 32171151
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cardiac MRI segmentation with focal loss constrained deep residual networks.
    Li C; Chen M; Zhang J; Liu H
    Phys Med Biol; 2021 Jul; 66(13):. PubMed ID: 34134101
    [TBL] [Abstract][Full Text] [Related]  

  • 57. IBA-U-Net: Attentive BConvLSTM U-Net with Redesigned Inception for medical image segmentation.
    Chen S; Zou Y; Liu PX
    Comput Biol Med; 2021 Aug; 135():104551. PubMed ID: 34157471
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Automatic bladder segmentation from CT images using deep CNN and 3D fully connected CRF-RNN.
    Xu X; Zhou F; Liu B
    Int J Comput Assist Radiol Surg; 2018 Jul; 13(7):967-975. PubMed ID: 29556905
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks.
    Tong N; Gou S; Yang S; Ruan D; Sheng K
    Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Psoriasis skin biopsy image segmentation using Deep Convolutional Neural Network.
    Pal A; Garain U; Chandra A; Chatterjee R; Senapati S
    Comput Methods Programs Biomed; 2018 Jun; 159():59-69. PubMed ID: 29650319
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.