These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 34365180)
1. Elucidating the key environmental parameters during the production of ectoines from biogas by mixed methanotrophic consortia. Carmona-Martínez AA; Marcos-Rodrigo E; Bordel S; Marín D; Herrero-Lobo R; García-Encina PA; Muñoz R J Environ Manage; 2021 Nov; 298():113462. PubMed ID: 34365180 [TBL] [Abstract][Full Text] [Related]
2. Ectoines production from biogas in pilot bubble column bioreactors and their subsequent extraction via bio-milking. Rodero MDR; Carmona-Martínez AA; Martínez-Fraile C; Herrero-Lobo R; Rodríguez E; García-Encina PA; Peña M; Muñoz R Water Res; 2023 Oct; 245():120665. PubMed ID: 37801795 [TBL] [Abstract][Full Text] [Related]
3. Influence of operational conditions on the performance of biogas bioconversion into ectoines in pilot bubble column bioreactors. Rodero MDR; Herrero-Lobo R; Pérez V; Muñoz R Bioresour Technol; 2022 Aug; 358():127398. PubMed ID: 35640813 [TBL] [Abstract][Full Text] [Related]
4. A systematic comparison of ectoine production from upgraded biogas using Methylomicrobium alcaliphilum and a mixed haloalkaliphilic consortium. Cantera S; Phandanouvong-Lozano V; Pascual C; García-Encina PA; Lebrero R; Hay A; Muñoz R Waste Manag; 2020 Feb; 102():773-781. PubMed ID: 31812092 [TBL] [Abstract][Full Text] [Related]
5. Novel haloalkaliphilic methanotrophic bacteria: An attempt for enhancing methane bio-refinery. Cantera S; Sánchez-Andrea I; Sadornil LJ; García-Encina PA; Stams AJM; Muñoz R J Environ Manage; 2019 Feb; 231():1091-1099. PubMed ID: 30602233 [TBL] [Abstract][Full Text] [Related]
6. Optimization of methane gas-liquid mass transfer during biogas-based ectoine production in bubble column bioreactors. Rodero MDR; Pérez V; Muñoz R J Environ Manage; 2024 Aug; 366():121811. PubMed ID: 39002456 [TBL] [Abstract][Full Text] [Related]
7. Valorization of CH4 emissions into high-added-value products: Assessing the production of ectoine coupled with CH4 abatement. Cantera S; Lebrero R; Sadornil L; García-Encina PA; Muñoz R J Environ Manage; 2016 Nov; 182():160-165. PubMed ID: 27472052 [TBL] [Abstract][Full Text] [Related]
8. Bio-conversion of methane into high profit margin compounds: an innovative, environmentally friendly and cost-effective platform for methane abatement. Cantera S; Bordel S; Lebrero R; Gancedo J; García-Encina PA; Muñoz R World J Microbiol Biotechnol; 2019 Jan; 35(1):16. PubMed ID: 30617555 [TBL] [Abstract][Full Text] [Related]
9. Multi-production of high added market value metabolites from diluted methane emissions via methanotrophic extremophiles. Cantera S; Sánchez-Andrea I; Lebrero R; García-Encina PA; Stams AJM; Muñoz R Bioresour Technol; 2018 Nov; 267():401-407. PubMed ID: 30031279 [TBL] [Abstract][Full Text] [Related]
10. Diversity of the ectoines biosynthesis genes in the salt tolerant Streptomyces and evidence for inductive effect of ectoines on their accumulation. Sadeghi A; Soltani BM; Nekouei MK; Jouzani GS; Mirzaei HH; Sadeghizadeh M Microbiol Res; 2014; 169(9-10):699-708. PubMed ID: 24629523 [TBL] [Abstract][Full Text] [Related]
11. High productivity of ectoines by Halomonas boliviensis using a combined two-step fed-batch culture and milking process. Van-Thuoc D; Guzmán H; Quillaguamán J; Hatti-Kaul R J Biotechnol; 2010 May; 147(1):46-51. PubMed ID: 20223266 [TBL] [Abstract][Full Text] [Related]
12. Enhanced production of ectoine from methane using metabolically engineered Methylomicrobium alcaliphilum 20Z. Cho S; Lee YS; Chai H; Lim SE; Na JG; Lee J Biotechnol Biofuels Bioprod; 2022 Jan; 15(1):5. PubMed ID: 35418141 [TBL] [Abstract][Full Text] [Related]
13. High-efficiency production of 5-hydroxyectoine using metabolically engineered Corynebacterium glutamicum. Jungmann L; Hoffmann SL; Lang C; De Agazio R; Becker J; Kohlstedt M; Wittmann C Microb Cell Fact; 2022 Dec; 21(1):274. PubMed ID: 36578077 [TBL] [Abstract][Full Text] [Related]
14. Recent trends in methane to bioproduct conversion by methanotrophs. Gęsicka A; Oleskowicz-Popiel P; Łężyk M Biotechnol Adv; 2021 Dec; 53():107861. PubMed ID: 34710553 [TBL] [Abstract][Full Text] [Related]
16. Methanol production by polymer-encapsulated methanotrophs from simulated biogas in the presence of methane vector. Patel SKS; Shanmugam R; Kalia VC; Lee JK Bioresour Technol; 2020 May; 304():123022. PubMed ID: 32070839 [TBL] [Abstract][Full Text] [Related]
17. The ectD gene, which is involved in the synthesis of the compatible solute hydroxyectoine, is essential for thermoprotection of the halophilic bacterium Chromohalobacter salexigens. García-Estepa R; Argandoña M; Reina-Bueno M; Capote N; Iglesias-Guerra F; Nieto JJ; Vargas C J Bacteriol; 2006 Jun; 188(11):3774-84. PubMed ID: 16707670 [TBL] [Abstract][Full Text] [Related]
18. EctD-mediated biotransformation of the chemical chaperone ectoine into hydroxyectoine and its mechanosensitive channel-independent excretion. Czech L; Stöveken N; Bremer E Microb Cell Fact; 2016 Jul; 15(1):126. PubMed ID: 27439307 [TBL] [Abstract][Full Text] [Related]
19. High production of ectoine from methane in genetically engineered Methylomicrobium alcaliphilum 20Z by preventing ectoine degradation. Lim SE; Cho S; Choi Y; Na JG; Lee J Microb Cell Fact; 2024 May; 23(1):127. PubMed ID: 38698430 [TBL] [Abstract][Full Text] [Related]
20. Methane oxidising bacteria to upcycle effluent streams from anaerobic digestion of municipal biowaste. Tsapekos P; Khoshnevisan B; Zhu X; Zha X; Angelidaki I J Environ Manage; 2019 Dec; 251():109590. PubMed ID: 31550605 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]