These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 34365274)

  • 1. An audio-visual motor training improves audio spatial localization skills in individuals with scotomas due to retinal degenerative diseases.
    Ahmad H; Tonelli A; Campus C; Capris E; Facchini V; Sandini G; Gori M
    Acta Psychol (Amst); 2021 Sep; 219():103384. PubMed ID: 34365274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Audio-Visual Thumble (AVT): A low-vision rehabilitation device using multisensory feedbacks.
    Ahmad H; Tonelli A; Crepaldi M; Martolini C; Capris E; Gori M
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3913-3916. PubMed ID: 33018856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Sound of Scotoma: Audio Space Representation Reorganization in Individuals With Macular Degeneration.
    Ahmad H; Setti W; Campus C; Capris E; Facchini V; Sandini G; Gori M
    Front Integr Neurosci; 2019; 13():44. PubMed ID: 31481884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Audio Motor Training at the Foot Level Improves Space Representation.
    Aggius-Vella E; Campus C; Finocchietti S; Gori M
    Front Integr Neurosci; 2017; 11():36. PubMed ID: 29326564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Audio Feedback Associated With Body Movement Enhances Audio and Somatosensory Spatial Representation.
    Cuppone AV; Cappagli G; Gori M
    Front Integr Neurosci; 2018; 12():37. PubMed ID: 30233334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transfer of Audio-Visual Temporal Training to Temporal and Spatial Audio-Visual Tasks.
    Sürig R; Bottari D; Röder B
    Multisens Res; 2018 Jan; 31(6):556-578. PubMed ID: 31264612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing learning outcomes through multisensory integration: A fMRI study of audio-visual training in virtual reality.
    Alwashmi K; Meyer G; Rowe F; Ward R
    Neuroimage; 2024 Jan; 285():120483. PubMed ID: 38048921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of audio-motor training on spatial representations in long-term late blindness.
    Martolini C; Amadeo MB; Campus C; Cappagli G; Gori M
    Neuropsychologia; 2022 Nov; 176():108391. PubMed ID: 36209890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Auditory Spatial Recalibration in Congenital Blind Individuals.
    Finocchietti S; Cappagli G; Gori M
    Front Neurosci; 2017; 11():76. PubMed ID: 28261053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shape Recognition With Sounds: Improvement in Sighted Individuals After Audio-Motor Training.
    Martolini C; Cappagli G; Campus C; Gori M
    Multisens Res; 2020 Mar; 33(4-5):417-431. PubMed ID: 31751938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual rehabilitation using microperimetric acoustic biofeedback training in individuals with central scotoma.
    Ratra D; Gopalakrishnan S; Dalan D; Ratra V; Damkondwar D; Laxmi G
    Clin Exp Optom; 2019 Mar; 102(2):172-179. PubMed ID: 30253443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attentional reorienting triggers spatial asymmetries in a search task with cross-modal spatial cueing.
    Paladini RE; Diana L; Zito GA; Nyffeler T; Wyss P; Mosimann UP; Müri RM; Nef T; Cazzoli D
    PLoS One; 2018; 13(1):e0190677. PubMed ID: 29293637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Task-Specific, Age Related Effects in the Cross-Modal Identification and Localisation of Objects.
    Barrett MM; Newell FN
    Multisens Res; 2015; 28(1-2):111-51. PubMed ID: 26152055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrating oculomotor and perceptual training to induce a pseudofovea: A model system for studying central vision loss.
    Liu R; Kwon M
    J Vis; 2016; 16(6):10. PubMed ID: 27089065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial alignment over retinal scotomas.
    Crossland MD; Bex PJ
    Invest Ophthalmol Vis Sci; 2009 Mar; 50(3):1464-9. PubMed ID: 19029023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Training With Simulated Scotoma Leads to Behavioral Improvements Through at Least Two Distinct Mechanisms.
    Biles MK; Maniglia M; Yadav IS; Vice JE; Visscher KM
    Invest Ophthalmol Vis Sci; 2023 Jan; 64(1):14. PubMed ID: 36656567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Audio-Visual Training in Older Adults: 2-Interval-Forced Choice Task Improves Performance.
    O'Brien JM; Chan JS; Setti A
    Front Neurosci; 2020; 14():569212. PubMed ID: 33304234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complementary spatial and timing control in rhythmic arm movements.
    Nickl RW; Ankarali MM; Cowan NJ
    J Neurophysiol; 2019 Apr; 121(4):1543-1560. PubMed ID: 30811263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compensatory Recovery after Multisensory Stimulation in Hemianopic Patients: Behavioral and Neurophysiological Components.
    Grasso PA; Làdavas E; Bertini C
    Front Syst Neurosci; 2016; 10():45. PubMed ID: 27252629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of bilateral macular scotomas from age-related macular degeneration on reach-to-grasp hand movement.
    Timberlake GT; Omoscharka E; Quaney BM; Grose SA; Maino JH
    Invest Ophthalmol Vis Sci; 2011 Apr; 52(5):2540-50. PubMed ID: 21296817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.