These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 34365470)
1. Fitness consequences of hybridization in a predominantly selfing species: insights into the role of dominance and epistatic incompatibilities. Clo J; Ronfort J; Gay L Heredity (Edinb); 2021 Oct; 127(4):393-400. PubMed ID: 34365470 [TBL] [Abstract][Full Text] [Related]
2. Heterosis and outbreeding depression in crosses between natural populations of Arabidopsis thaliana. Oakley CG; Ågren J; Schemske DW Heredity (Edinb); 2015 Jul; 115(1):73-82. PubMed ID: 26059971 [TBL] [Abstract][Full Text] [Related]
3. Detecting directional epistasis and dominance from cross-line analyses in alpine populations of Arabidopsis thaliana. Le Rouzic A; Roumet M; Widmer A; Clo J J Evol Biol; 2024 Jul; 37(7):839-847. PubMed ID: 38712591 [TBL] [Abstract][Full Text] [Related]
4. Epistasis in natural populations of a predominantly selfing plant. Volis S; Shulgina I; Zaretsky M; Koren O Heredity (Edinb); 2011 Feb; 106(2):300-9. PubMed ID: 20551977 [TBL] [Abstract][Full Text] [Related]
5. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield. Li ZK; Luo LJ; Mei HW; Wang DL; Shu QY; Tabien R; Zhong DB; Ying CS; Stansel JW; Khush GS; Paterson AH Genetics; 2001 Aug; 158(4):1737-53. PubMed ID: 11514459 [TBL] [Abstract][Full Text] [Related]
6. From heterosis to outbreeding depression: genotype-by-environment interaction shifts hybrid fitness in opposite directions. Wang H; Su B; Zhang Y; Shang M; Li S; Xing D; Wang J; Bern L; Johnson A; Al-Armanazi J; Hasin T; Hettiarachchi D; Paladines Parrales A; Dilawar H; Bruce TJ; Dunham RA; Wang X Genetics; 2024 Aug; 227(4):. PubMed ID: 38809057 [TBL] [Abstract][Full Text] [Related]
7. Genetic basis of heterosis for yield and yield components explored by QTL mapping across four genetic populations in upland cotton. Li C; Zhao T; Yu H; Li C; Deng X; Dong Y; Zhang F; Zhang Y; Mei L; Chen J; Zhu S BMC Genomics; 2018 Dec; 19(1):910. PubMed ID: 30541432 [TBL] [Abstract][Full Text] [Related]
8. Contributions of heterosis and epistasis to hybrid fitness. Rhode JM; Cruzan MB Am Nat; 2005 Nov; 166(5):E124-39. PubMed ID: 16224715 [TBL] [Abstract][Full Text] [Related]
9. Partial Dominance, Overdominance and Epistasis as the Genetic Basis of Heterosis in Upland Cotton (Gossypium hirsutum L.). Liang Q; Shang L; Wang Y; Hua J PLoS One; 2015; 10(11):e0143548. PubMed ID: 26618635 [TBL] [Abstract][Full Text] [Related]
10. The consequences of mating over a range of parental genetic similarity in a selfing allopolyploid plant species. Vandepitte K; Jacquemyn H; Roldán-Ruiz I; Honnay O J Evol Biol; 2011 Dec; 24(12):2750-8. PubMed ID: 21955301 [TBL] [Abstract][Full Text] [Related]
11. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. II. Grain yield components. Luo LJ; Li ZK; Mei HW; Shu QY; Tabien R; Zhong DB; Ying CS; Stansel JW; Khush GS; Paterson AH Genetics; 2001 Aug; 158(4):1755-71. PubMed ID: 11514460 [TBL] [Abstract][Full Text] [Related]
12. Additive and over-dominant effects resulting from epistatic loci are the primary genetic basis of heterosis in rice. Luo X; Fu Y; Zhang P; Wu S; Tian F; Liu J; Zhu Z; Yang J; Sun C J Integr Plant Biol; 2009 Apr; 51(4):393-408. PubMed ID: 21452591 [TBL] [Abstract][Full Text] [Related]
13. Mating system and speciation I: Accumulation of genetic incompatibilities in allopatry. Marie-Orleach L; Brochmann C; Glémin S PLoS Genet; 2022 Dec; 18(12):e1010353. PubMed ID: 36520924 [TBL] [Abstract][Full Text] [Related]
14. Heterosis is common and inbreeding depression absent in natural populations of Arabidopsis thaliana. Oakley CG; Lundemo S; Ågren J; Schemske DW J Evol Biol; 2019 Jun; 32(6):592-603. PubMed ID: 30883966 [TBL] [Abstract][Full Text] [Related]
15. Fitness consequences of hybridization between ecotypes of Avena barbata: hybrid breakdown, hybrid vigor, and transgressive segregation. Johansen-Morris AD; Latta RG Evolution; 2006 Aug; 60(8):1585-95. PubMed ID: 17017059 [TBL] [Abstract][Full Text] [Related]
16. Epistatic and cytonuclear interactions govern outbreeding depression in the autotetraploid Campanulastrum americanum. Etterson JR; Keller SR; Galloway LF Evolution; 2007 Nov; 61(11):2671-83. PubMed ID: 17908243 [TBL] [Abstract][Full Text] [Related]
17. Dominance and epistasis are the main contributors to heterosis for plant height in rice. Shen G; Zhan W; Chen H; Xing Y Plant Sci; 2014 Feb; 215-216():11-8. PubMed ID: 24388510 [TBL] [Abstract][Full Text] [Related]
18. Multigenerational Fitness Effects of Natural Immigration Indicate Strong Heterosis and Epistatic Breakdown in a Wild Bird Population. Dickel L; Arcese P; Keller LF; Nietlisbach P; Goedert D; Jensen H; Reid JM Am Nat; 2024 Mar; 203(3):411-431. PubMed ID: 38358807 [TBL] [Abstract][Full Text] [Related]
19. Genetic basis of heterosis for growth-related traits in Arabidopsis investigated by testcross progenies of near-isogenic lines reveals a significant role of epistasis. Melchinger AE; Piepho HP; Utz HF; Muminovic J; Wegenast T; Törjék O; Altmann T; Kusterer B Genetics; 2007 Nov; 177(3):1827-37. PubMed ID: 18039884 [TBL] [Abstract][Full Text] [Related]
20. Quantitative trait loci mapping and the genetic basis of heterosis in maize and rice. Garcia AA; Wang S; Melchinger AE; Zeng ZB Genetics; 2008 Nov; 180(3):1707-24. PubMed ID: 18791260 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]