These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 34365602)
21. In situ stabilization of As and Sb with naturally occurring Mn, Al and Fe oxides in a calcareous soil: bioaccessibility, bioavailability and speciation studies. Bagherifam S; Lakzian A; Fotovat A; Khorasani R; Komarneni S J Hazard Mater; 2014 May; 273():247-52. PubMed ID: 24751490 [TBL] [Abstract][Full Text] [Related]
22. Synthesis of nano-silica and biogenic iron (oxyhydr)oxides composites mediated by iron oxidizing bacteria to remove antimonite and antimonate from aqueous solution: Performance and mechanisms. Xu R; Li Q; Nan X; Yang Y; Xu B; Li K; Wang L; Zhang Y; Jiang T J Hazard Mater; 2022 Jan; 422():126821. PubMed ID: 34419843 [TBL] [Abstract][Full Text] [Related]
23. Antimony (Sb) and arsenic (As) in Sb mining impacted paddy soil from Xikuangshan, China: differences in mechanisms controlling soil sequestration and uptake in rice. Okkenhaug G; Zhu YG; He J; Li X; Luo L; Mulder J Environ Sci Technol; 2012 Mar; 46(6):3155-62. PubMed ID: 22309044 [TBL] [Abstract][Full Text] [Related]
24. Aluminum adsorption and antimonite oxidation dominantly regulate antimony solubility in soils. Liu YQ; Wen-Xin Lv ; Zhong-Qiu Zhao ; Yang YP; Zhang LX; Wang LY; Jing CY; Duan GL; Zhu YG Chemosphere; 2022 Dec; 309(Pt 1):136651. PubMed ID: 36181839 [TBL] [Abstract][Full Text] [Related]
25. The Immobilization Effect of Natural Mineral Materials on Cr(VI) Remediation in Water and Soil. Zhang D; Xu Y; Li X; Wang L; He X; Ma Y; Zou D Int J Environ Res Public Health; 2020 Apr; 17(8):. PubMed ID: 32326056 [TBL] [Abstract][Full Text] [Related]
26. Attenuation of Pb and Sb in shooting range soils by Fe amendments. Barker AJ; Douglas TA; Spaleta KJ; Trainor TP Chemosphere; 2023 Mar; 318():137899. PubMed ID: 36693479 [TBL] [Abstract][Full Text] [Related]
27. Antimony release from contaminated mine soils and its migration in four typical soils using lysimeter experiments. Shangguan YX; Zhao L; Qin Y; Hou H; Zhang N Ecotoxicol Environ Saf; 2016 Nov; 133():1-9. PubMed ID: 27395817 [TBL] [Abstract][Full Text] [Related]
28. Stabilization of arsenic and antimony Co-contaminated soil with an iron-based stabilizer: Assessment of strength, leaching and hydraulic properties and immobilization mechanisms. Zhou S; Du Y; Feng Y; Sun H; Xia W; Yuan H Chemosphere; 2022 Aug; 301():134644. PubMed ID: 35452641 [TBL] [Abstract][Full Text] [Related]
29. Effect of pH on the adsorption of arsenic(V) and antimony(V) by the black soil in three systems: Performance and mechanism. Fan Y; Zheng C; Liu H; He C; Shen Z; Zhang TC Ecotoxicol Environ Saf; 2020 Mar; 191():110145. PubMed ID: 31954214 [TBL] [Abstract][Full Text] [Related]
30. Sorption-desorption of Sb(III) in different soils: Kinetics and effects of the selective removal of hydroxides, organic matter, and humic substances. Li J; Hou H; Hosomi M Chemosphere; 2018 Aug; 204():371-377. PubMed ID: 29674149 [TBL] [Abstract][Full Text] [Related]
31. Antimony Immobilization in Primary-Explosives-Contaminated Soils by Fe-Al-Based Amendments. Wang N; Jiang Y; Xia T; Xu F; Zhang C; Zhang D; Wu Z Int J Environ Res Public Health; 2022 Feb; 19(4):. PubMed ID: 35206172 [TBL] [Abstract][Full Text] [Related]
32. Concurrent sorption of antimony and lead by iron phosphate and its possible application for multi-oxyanion contaminated soil. Kim HN; Park JH Environ Sci Pollut Res Int; 2023 Feb; 30(9):22835-22842. PubMed ID: 36308659 [TBL] [Abstract][Full Text] [Related]
33. Influences of soil properties and long-time aging on phytotoxicity of antimony to barley root elongation. Lin X; He F; Sun Z; Hou H; Zhao L Environ Pollut; 2020 Jul; 262():114330. PubMed ID: 32179216 [TBL] [Abstract][Full Text] [Related]
34. Antimony sorption to schwertmannite in acid sulfate environments. Rastegari M; Karimian N; Johnston SG; Choppala G; Moghaddam MH; Burton ED J Hazard Mater; 2024 Oct; 478():135545. PubMed ID: 39153299 [TBL] [Abstract][Full Text] [Related]
35. Bioaccessibility, solid phase distribution, and speciation of Sb in soils and in digestive fluids. Denys S; Tack K; Caboche J; Delalain P Chemosphere; 2009 Feb; 74(5):711-6. PubMed ID: 19027930 [TBL] [Abstract][Full Text] [Related]
36. Antimony removal from water by pine bark tannin resin: Batch and fixed-bed adsorption. Bacelo H; Santos SCR; Ribeiro A; Boaventura RAR; Botelho CMS J Environ Manage; 2022 Jan; 302(Pt B):114100. PubMed ID: 34794053 [TBL] [Abstract][Full Text] [Related]
37. Factors influencing the uptake and speciation transformation of antimony in the soil-plant system, and the redistribution and toxicity of antimony in plants. Zhu Y; Yang J; Wang L; Lin Z; Dai J; Wang R; Yu Y; Liu H; Rensing C; Feng R Sci Total Environ; 2020 Oct; 738():140232. PubMed ID: 32806353 [TBL] [Abstract][Full Text] [Related]
38. Coupled sorptive and oxidative antimony(III) removal by iron-modified biochar: Mechanisms of electron-donating capacity and reactive Fe species. Gao Y; Chen H; Fang Z; Niazi NK; Adusei-Fosu K; Li J; Yang X; Liu Z; Bolan NS; Gao B; Hou D; Sun C; Meng J; Chen W; Quin BF; Wang H Environ Pollut; 2023 Nov; 337():122637. PubMed ID: 37769707 [TBL] [Abstract][Full Text] [Related]
39. Bioavailability of antimony and arsenic in a flowering cabbage-soil system: Controlling factors and interactive effect. Chang C; Li F; Wang Q; Hu M; Du Y; Zhang X; Zhang X; Chen C; Yu HY Sci Total Environ; 2022 Apr; 815():152920. PubMed ID: 35007579 [TBL] [Abstract][Full Text] [Related]
40. Removal of antimonite (Sb(III)) from aqueous solution using a magnetic iron-modified carbon nanotubes (CNTs) composite: Experimental observations and governing mechanisms. Cheng Z; Lyu H; Shen B; Tian J; Sun Y; Wu C Chemosphere; 2022 Feb; 288(Pt 2):132581. PubMed ID: 34656624 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]