These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 34365638)

  • 1. Ecosystem engineering alters density-dependent feedbacks in an aquatic insect population.
    Phillips JS; McCormick AR; Botsch JC; Ives AR
    Ecology; 2021 Nov; 102(11):e03513. PubMed ID: 34365638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstructing midge consumer-resource dynamics using carbon stable isotope signatures of archived specimens.
    McCormick AR; Phillips JS; Botsch JC; Einarsson Á; Gardarsson A; Ives AR
    Ecology; 2023 Feb; 104(2):e3901. PubMed ID: 36310437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Positive feedback between chironomids and algae creates net mutualism between benthic primary consumers and producers.
    Herren CM; Webert KC; Drake MD; Jake Vander Zanden M; Einarsson Á; Ives AR; Gratton C
    Ecology; 2017 Feb; 98(2):447-455. PubMed ID: 27861769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lake to land subsidies: experimental addition of aquatic insects increases terrestrial arthropod densities.
    Hoekman D; Dreyer J; Jackson RD; Townsend PA; Gratton C
    Ecology; 2011 Nov; 92(11):2063-72. PubMed ID: 22164831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-amplitude fluctuations and alternative dynamical states of midges in Lake Myvatn.
    Ives AR; Einarsson A; Jansen VA; Gardarsson A
    Nature; 2008 Mar; 452(7183):84-7. PubMed ID: 18322533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying aquatic insect deposition from lake to land.
    Dreyer J; Townsend PA; Hook JC; Hoekman D; Vander Zanden MJ; Gratton C
    Ecology; 2015 Feb; 96(2):499-509. PubMed ID: 26240871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ecosystem linkages revealed by experimental lake-derived isotope signal in heathland food webs.
    Hoekman D; Bartrons M; Gratton C
    Oecologia; 2012 Nov; 170(3):735-43. PubMed ID: 22526944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying consumer-resource population dynamics using paleoecological data.
    Einarsson Á; Hauptfleisch U; Leavitt PR; Ives AR
    Ecology; 2016 Feb; 97(2):361-71. PubMed ID: 27145611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silver bioaccumulation in chironomid larvae as a potential source for upper trophic levels: a study case from northern Patagonia.
    Williams N; Rizzo A; Arribére MA; Suárez DA; Guevara SR
    Environ Sci Pollut Res Int; 2018 Jan; 25(2):1921-1932. PubMed ID: 29103123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetrical competition between aquatic primary producers in a warmer and browner world.
    Vasconcelos FR; Diehl S; Rodríguez P; Hedström P; Karlsson J; Byström P
    Ecology; 2016 Oct; 97(10):2580-2592. PubMed ID: 27859128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of simulated CO₂ escape from sediments on the development of midge Chironomus riparius.
    Khosrovyan A; DelValls TA; Riba I
    Aquat Toxicol; 2014 Nov; 156():230-9. PubMed ID: 25265051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disentangling the drivers of decadal body size decline in an insect population.
    Botsch JC; Zaveri AN; Nell LA; McCormick AR; Book KR; Phillips JS; Einarsson Á; Ives AR
    Glob Chang Biol; 2024 Jan; 30(1):e17014. PubMed ID: 37943090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laboratory evaluation of six algal species for larval nutritional suitability of the pestiferous midge Glyptotendipes paripes (Diptera: Chironomidae).
    Frouz J; Ali A; Lobinske RJ
    J Econ Entomol; 2004 Dec; 97(6):1884-90. PubMed ID: 15666740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sublethal effects of three pesticides on larval survivorship, growth, and macromolecule production in the aquatic midge, Chironomus tentans (diptera: chironomidae).
    Rakotondravelo ML; Anderson TD; Charlton RE; Zhu KY
    Arch Environ Contam Toxicol; 2006 Oct; 51(3):352-9. PubMed ID: 16865603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flux of aquatic insect productivity to land: comparison of lentic and lotic ecosystems.
    Gratton C; Vander Zanden MJ
    Ecology; 2009 Oct; 90(10):2689-99. PubMed ID: 19886479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stream Mesocosm Experiments Show Significant Differences in Sensitivity of Larval and Emerging Adults to Metals.
    Kotalik CJ; Clements WH
    Environ Sci Technol; 2019 Jul; 53(14):8362-8370. PubMed ID: 31184880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased benthic algal primary production in response to the invasive zebra mussel (Dreissena polymorpha) in a productive ecosystem, Oneida Lake, New York.
    Cecala RK; Mayer CM; Schulz KL; Mills EL
    J Integr Plant Biol; 2008 Nov; 50(11):1452-66. PubMed ID: 19017132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mode of existence and seasonality of midge larvae (Diptera: Chironomidae) in man-made lakes in the Coachella Valley, southern California.
    Lothrop BB; Mulla MS
    J Am Mosq Control Assoc; 1995 Mar; 11(1):77-85. PubMed ID: 7616195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A chironomid (Diptera: Chironomidae) midge population study and laboratory evaluation of larvicides against midges inhabiting the lagoon of Venice, Italy.
    Ali A; Majori G; Ceretti G; D'Andrea F; Scattolin M; Ferrarese U
    J Am Mosq Control Assoc; 1985 Mar; 1(1):63-8. PubMed ID: 3880214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chironomidae feeding habits in different habitats from a Neotropical floodplain: exploring patterns in aquatic food webs.
    Butakka CM; Ragonha FH; Train S; Pinha GD; Takeda AM
    Braz J Biol; 2016 Feb; 76(1):117-25. PubMed ID: 26909630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.