BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34365661)

  • 1. How the even-toed ungulate vertebral column works: Comparison of intervertebral mobility in 33 genera.
    Belyaev RI; Kuznetsov AN; Prilepskaya NE
    J Anat; 2021 Dec; 239(6):1370-1399. PubMed ID: 34365661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From dorsomobility to dorsostability: A study of lumbosacral joint range of motion in artiodactyls.
    Belyaev RI; Kuznetsov AN; Prilepskaya NE
    J Anat; 2022 Aug; 241(2):420-436. PubMed ID: 35616615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Truly dorsostable runners: Vertebral mobility in rhinoceroses, tapirs, and horses.
    Belyaev RI; Kuznetsov AN; Prilepskaya NE
    J Anat; 2023 Apr; 242(4):568-591. PubMed ID: 36519561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mechanistic approach for the calculation of intervertebral mobility in mammals based on vertebrae osteometry.
    Belyaev RI; Kuznetsov AN; Prilepskaya NE
    J Anat; 2021 Jan; 238(1):113-130. PubMed ID: 32951205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Running, jumping, hunting, and scavenging: Functional analysis of vertebral mobility and backbone properties in carnivorans.
    Belyaev RI; Nikolskaia P; Bushuev AV; Panyutina AA; Kozhanova DA; Prilepskaya NE
    J Anat; 2024 Feb; 244(2):205-231. PubMed ID: 37837214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo three-dimensional intervertebral kinematics of the subaxial cervical spine during seated axial rotation and lateral bending via a fluoroscopy-to-CT registration approach.
    Lin CC; Lu TW; Wang TM; Hsu CY; Hsu SJ; Shih TF
    J Biomech; 2014 Oct; 47(13):3310-7. PubMed ID: 25218506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupled motions in human and porcine thoracic and lumbar spines.
    Kingma I; Busscher I; van der Veen AJ; Verkerke GJ; Veldhuizen AG; Homminga J; van Dieën JH
    J Biomech; 2018 Mar; 70():51-58. PubMed ID: 29246473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sagittal spine movements of small therian mammals during asymmetrical gaits.
    Schilling N; Hackert R
    J Exp Biol; 2006 Oct; 209(Pt 19):3925-39. PubMed ID: 16985208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thoracic segmental flexion during cervical forward bending.
    Fiebert IM; Spyropoulos T; Peterman D; Dotson L
    J Back Musculoskelet Rehabil; 1993 Jan; 3(4):80-5. PubMed ID: 24573143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influences of functional structures on the kinematic behavior of the cervical spine.
    Jonas R; Demmelmaier R; Wilke HJ
    Spine J; 2020 Dec; 20(12):2014-2024. PubMed ID: 32768654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of an interspinous fixation device (ISD) in lumbar fusion constructs: a biomechanical study.
    Techy F; Mageswaran P; Colbrunn RW; Bonner TF; McLain RF
    Spine J; 2013 May; 13(5):572-9. PubMed ID: 23498926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of an artificial disc on lumbar spine biomechanics: a probabilistic finite element study.
    Rohlmann A; Mann A; Zander T; Bergmann G
    Eur Spine J; 2009 Jan; 18(1):89-97. PubMed ID: 19043744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional morphology and three-dimensional kinematics of the thoraco-lumbar region of the spine of the two-toed sloth.
    Nyakatura JA; Fischer MS
    J Exp Biol; 2010 Dec; 213(Pt 24):4278-90. PubMed ID: 21113010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of follower load on the range of motion, facet joint force, and intradiscal pressure of the cervical spine: a finite element study.
    Cai XY; YuChi CX; Du CF; Mo ZJ
    Med Biol Eng Comput; 2020 Aug; 58(8):1695-1705. PubMed ID: 32462554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical contribution of spinal structures to stability of the lumbar spine-novel biomechanical insights.
    Widmer J; Cornaz F; Scheibler G; Spirig JM; Snedeker JG; Farshad M
    Spine J; 2020 Oct; 20(10):1705-1716. PubMed ID: 32474224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Function of revolute zygapophyses in the lumbar vertebrae of early placental mammals.
    Kort AE; Jones KE
    Anat Rec (Hoboken); 2024 May; 307(5):1918-1929. PubMed ID: 37712919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The biomechanical influence of facet joint parameters on corresponding segment in the lumbar spine: a new visualization method.
    Ke S; He X; Yang M; Wang S; Song X; Li Z
    Spine J; 2021 Dec; 21(12):2112-2121. PubMed ID: 34077779
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.