BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 34365674)

  • 21. Josephson current through a quantum dot coupled to a Majorana zero mode.
    Tang HZ; Zhang YT; Liu JJ
    J Phys Condens Matter; 2016 May; 28(17):175301. PubMed ID: 27028266
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Abrupt Schottky Junctions in Al/Ge Nanowire Heterostructures.
    Kral S; Zeiner C; Stöger-Pollach M; Bertagnolli E; den Hertog MI; Lopez-Haro M; Robin E; El Hajraoui K; Lugstein A
    Nano Lett; 2015 Jul; 15(7):4783-7. PubMed ID: 26052733
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Triode Device with a Gate Controllable Schottky Barrier: Germanium Nanowire Transistors and Their Applications.
    Lin CY; Chen CF; Chang YM; Yang SH; Lee KC; Wu WW; Jian WB; Lin YF
    Small; 2019 Aug; 15(33):e1900865. PubMed ID: 31264786
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Majorana dc Josephson current mediated by a quantum dot.
    Xu L; Li XQ; Sun QF
    J Phys Condens Matter; 2017 May; 29(19):195301. PubMed ID: 28287397
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermophase Seebeck Coefficient in Hybridized Superconductor-Quantum-Dot-Superconductor Josephson Junction Side-Coupled to Majorana Nanowire.
    Gao Y; Zhang X; Yi Z; Liu L; Chi F
    Nanomaterials (Basel); 2023 Sep; 13(17):. PubMed ID: 37686996
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Andreev molecules in semiconductor nanowire double quantum dots.
    Su Z; Tacla AB; Hocevar M; Car D; Plissard SR; Bakkers EPAM; Daley AJ; Pekker D; Frolov SM
    Nat Commun; 2017 Sep; 8(1):585. PubMed ID: 28928420
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Supercurrent, Multiple Andreev Reflections and Shapiro Steps in InAs Nanosheet Josephson Junctions.
    Yan S; Su H; Pan D; Li W; Lyu Z; Chen M; Wu X; Lu L; Zhao J; Wang JY; Xu H
    Nano Lett; 2023 Jul; 23(14):6497-6503. PubMed ID: 37450769
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrascaled Germanium Nanowires for Highly Sensitive Photodetection at the Quantum Ballistic Limit.
    Staudinger P; Sistani M; Greil J; Bertagnolli E; Lugstein A
    Nano Lett; 2018 Aug; 18(8):5030-5035. PubMed ID: 29995430
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selective-Area Superconductor Epitaxy to Ballistic Semiconductor Nanowires.
    Gill ST; Damasco J; Janicek BE; Durkin MS; Humbert V; Gazibegovic S; Car D; Bakkers EPAM; Huang PY; Mason N
    Nano Lett; 2018 Oct; 18(10):6121-6128. PubMed ID: 30200769
    [TBL] [Abstract][Full Text] [Related]  

  • 30. InAs/MoRe Hybrid Semiconductor/Superconductor Nanowire Devices.
    Kousar B; Carrad DJ; Stampfer L; Krogstrup P; Nygård J; Jespersen TS
    Nano Lett; 2022 Nov; 22(22):8845-8851. PubMed ID: 36332116
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Signatures of Andreev Blockade in a Double Quantum Dot Coupled to a Superconductor.
    Zhang P; Wu H; Chen J; Khan SA; Krogstrup P; Pekker D; Frolov SM
    Phys Rev Lett; 2022 Jan; 128(4):046801. PubMed ID: 35148137
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Anderson-Josephson quantum dot-a theory perspective.
    Meden V
    J Phys Condens Matter; 2019 Apr; 31(16):163001. PubMed ID: 30630142
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proximity Effect Transfer from NbTi into a Semiconductor Heterostructure via Epitaxial Aluminum.
    Drachmann AC; Suominen HJ; Kjaergaard M; Shojaei B; Palmstrøm CJ; Marcus CM; Nichele F
    Nano Lett; 2017 Feb; 17(2):1200-1203. PubMed ID: 28072541
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hybrid superconductor-semiconductor devices made from self-assembled SiGe nanocrystals on silicon.
    Katsaros G; Spathis P; Stoffel M; Fournel F; Mongillo M; Bouchiat V; Lefloch F; Rastelli A; Schmidt OG; De Franceschi S
    Nat Nanotechnol; 2010 Jun; 5(6):458-64. PubMed ID: 20436467
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gate-Tunable Electron Transport Phenomena in Al-Ge⟨111⟩-Al Nanowire Heterostructures.
    Brunbauer FM; Bertagnolli E; Lugstein A
    Nano Lett; 2015 Nov; 15(11):7514-8. PubMed ID: 26426433
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Josephson Field-Effect Transistors Based on All-Metallic Al/Cu/Al Proximity Nanojunctions.
    De Simoni G; Paolucci F; Puglia C; Giazotto F
    ACS Nano; 2019 Jul; 13(7):7871-7876. PubMed ID: 31244044
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Superconducting junction of a single-crystalline au nanowire for an ideal Josephson device.
    Jung M; Noh H; Doh YJ; Song W; Chong Y; Choi MS; Yoo Y; Seo K; Kim N; Woo BC; Kim B; Kim J
    ACS Nano; 2011 Mar; 5(3):2271-6. PubMed ID: 21355535
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Monolithic Metal-Semiconductor-Metal Heterostructures Enabling Next-Generation Germanium Nanodevices.
    Wind L; Sistani M; Song Z; Maeder X; Pohl D; Michler J; Rellinghaus B; Weber WM; Lugstein A
    ACS Appl Mater Interfaces; 2021 Mar; 13(10):12393-12399. PubMed ID: 33683092
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direct Microwave Measurement of Andreev-Bound-State Dynamics in a Semiconductor-Nanowire Josephson Junction.
    Hays M; de Lange G; Serniak K; van Woerkom DJ; Bouman D; Krogstrup P; Nygård J; Geresdi A; Devoret MH
    Phys Rev Lett; 2018 Jul; 121(4):047001. PubMed ID: 30095962
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ge/Si nanowire heterostructures as high-performance field-effect transistors.
    Xiang J; Lu W; Hu Y; Wu Y; Yan H; Lieber CM
    Nature; 2006 May; 441(7092):489-93. PubMed ID: 16724062
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.