These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 34365787)

  • 21. NiCo
    Wang S; Wang L; Liu C; Shan Y; Li F; Sun L
    RSC Adv; 2022 Apr; 12(20):12544-12551. PubMed ID: 35480368
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Implementing Dopant-Free Hole-Transporting Layers and Metal-Incorporated CsPbI
    Mali SS; Patil JV; Steele JA; Rondiya SR; Dzade NY; Hong CK
    ACS Energy Lett; 2021 Feb; 6(2):778-788. PubMed ID: 33829109
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MAI Termination Favors Efficient Hole Extraction and Slow Charge Recombination at the MAPbI
    He J; Casanova D; Fang WH; Long R; Prezhdo OV
    J Phys Chem Lett; 2020 Jun; 11(11):4481-4489. PubMed ID: 32423207
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of Humidity on Crystal Growth of CuSCN for Perovskite Solar Cell Applications.
    Kogo A; Murakami TN
    Chemphyschem; 2023 Apr; 24(8):e202200832. PubMed ID: 36594411
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Efficient and Stable CuSCN-based Perovskite Solar Cells Achieved by Interfacial Engineering with Amidinothiourea.
    Tang Z; Yao D; Li Y; Li C; Xia T; Tian N; Wang J; Zheng G; Mo S; Long F; Zhou B
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38657125
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electric field-induced hole transport in copper(I) thiocyanate (CuSCN) thin-films processed from solution at room temperature.
    Pattanasattayavong P; Ndjawa GO; Zhao K; Chou KW; Yaacobi-Gross N; O'Regan BC; Amassian A; Anthopoulos TD
    Chem Commun (Camb); 2013 May; 49(39):4154-6. PubMed ID: 23223555
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solution-Processed Smooth Copper Thiocyanate Layer with Improved Hole Injection Ability for the Fabrication of Quantum Dot Light-Emitting Diodes.
    Wen MR; Yang SH; Chen WS
    Nanomaterials (Basel); 2022 Jan; 12(1):. PubMed ID: 35010104
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In Situ Raman Microdroplet Spectroelectrochemical Investigation of CuSCN Electrodeposited on Different Substrates.
    Vlčková Živcová Z; Bouša M; Velický M; Frank O; Kavan L
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34064622
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Guidelines for Fabricating Highly Efficient Perovskite Solar Cells with Cu
    Sajid S; Alzahmi S; Salem IB; Obaidat IM
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234442
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A computational approach to interface engineering of lead-free CH
    Lazemi M; Asgharizadeh S; Bellucci S
    Phys Chem Chem Phys; 2018 Oct; 20(40):25683-25692. PubMed ID: 30255882
    [TBL] [Abstract][Full Text] [Related]  

  • 31. First-Principles Study of Cu-Based Inorganic Hole Transport Materials for Solar Cell Applications.
    Pecoraro A; Maddalena P; Pavone M; Muñoz García AB
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013837
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In situ growth of Z-scheme CuS/CuSCN heterojunction to passivate surface defects and enhance charge transport.
    Ning P; Liang J; Li L; Chen D; Qin L; Yao X; Chen H; Huang Y
    J Colloid Interface Sci; 2021 May; 590():407-414. PubMed ID: 33561590
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interfacial Modification and Defect Passivation by the Cross-Linking Interlayer for Efficient and Stable CuSCN-Based Perovskite Solar Cells.
    Kim J; Lee Y; Yun AJ; Gil B; Park B
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):46818-46824. PubMed ID: 31741386
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chlorine-Infused Wide-Band Gap p-CuSCN/n-GaN Heterojunction Ultraviolet-Light Photodetectors.
    Liang JW; Firdaus Y; Kang CH; Min JW; Min JH; Al Ibrahim RH; Wehbe N; Hedhili MN; Kaltsas D; Tsetseris L; Lopatin S; Zheng S; Ng TK; Anthopoulos TD; Ooi BS
    ACS Appl Mater Interfaces; 2022 Apr; 14(15):17889-17898. PubMed ID: 35404567
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Boosting the Conversion Efficiency Over 20% in MAPbI
    Parida B; Yoon S; Ryu J; Hayase S; Jeong SM; Kang DW
    ACS Appl Mater Interfaces; 2020 May; 12(20):22958-22970. PubMed ID: 32326692
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 26.48% efficient and stable FAPbI
    Noman M; Shahzaib M; Jan ST; Shah SN; Khan AD
    RSC Adv; 2023 Jan; 13(3):1892-1905. PubMed ID: 36712640
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced performance of ZnO nanorod array/CuSCN ultraviolet photodetectors with functionalized graphene layers.
    Luo G; Zhang Z; Jiang J; Liu Y; Li W; Zhang J; Hao X; Wang W
    RSC Adv; 2021 Feb; 11(13):7682-7692. PubMed ID: 35423239
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-Efficiency Fullerene Solar Cells Enabled by a Spontaneously Formed Mesostructured CuSCN-Nanowire Heterointerface.
    Sit WY; Eisner FD; Lin YH; Firdaus Y; Seitkhan A; Balawi AH; Laquai F; Burgess CH; McLachlan MA; Volonakis G; Giustino F; Anthopoulos TD
    Adv Sci (Weinh); 2018 Apr; 5(4):1700980. PubMed ID: 29721432
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electronic Structure and Surface Properties of Copper Thiocyanate: A Promising Hole Transport Material for Organic Photovoltaic Cells.
    Odeke BA; Chung GD; Fajemisin JA; Suraj KS; Tonui DK; Tobi AR; Bewaale TC; Ajibola JA; Dzade NY
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33348691
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unusual Hole Transfer Dynamics of the NiO Layer in Methylammonium Lead Tri-iodide Absorber Solar Cells.
    Yang H; Park H; Kim B; Park C; Jeong S; Chae WS; Kim W; Jeong M; Ahn TK; Shin H
    J Phys Chem Lett; 2021 Mar; 12(11):2770-2779. PubMed ID: 33709718
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.