These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 34365845)

  • 1. Continuous Head Motion is a Greater Motor Control Challenge than Transient Head Motion in Patients with Loss of Vestibular Function.
    Wang L; Zobeiri OA; Millar JL; Souza Silva W; Schubert MC; Cullen KE
    Neurorehabil Neural Repair; 2021 Oct; 35(10):890-902. PubMed ID: 34365845
    [No Abstract]   [Full Text] [Related]  

  • 2. Head movement kinematics are altered during gaze stability exercises in vestibular schwannoma patients.
    Wang L; Zobeiri OA; Millar JL; Schubert MC; Cullen KE
    Sci Rep; 2021 Mar; 11(1):7139. PubMed ID: 33785796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Head movement kinematics are altered during balance stability exercises in individuals with vestibular schwannoma.
    Zobeiri OA; Wang L; Millar JL; Schubert MC; Cullen KE
    J Neuroeng Rehabil; 2022 Nov; 19(1):120. PubMed ID: 36352393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced Purposeful Head Movements During Community Ambulation Following Unilateral Vestibular Loss.
    Paul SS; Dibble LE; Walther RG; Shelton C; Gurgel RK; Lester ME
    Neurorehabil Neural Repair; 2018; 32(4-5):309-316. PubMed ID: 29676210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gaze stabilization in chronic vestibular-loss and in cerebellar ataxia: interactions of feedforward and sensory feedback mechanisms.
    Sağlam M; Lehnen N
    J Vestib Res; 2014; 24(5-6):425-31. PubMed ID: 25564085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of vestibular loss on head-on-trunk stability in individuals with vestibular schwannoma.
    Aryan R; Zobeiri OA; Millar JL; Schubert MC; Cullen KE
    Sci Rep; 2024 Feb; 14(1):3512. PubMed ID: 38347021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acute VOR gain differences for outward vs. inward head impulses.
    Schubert MC; Mantokoudis G; Xie L; Agrawal Y
    J Vestib Res; 2014; 24(5-6):397-402. PubMed ID: 25564082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Head-Trunk Coordination Deficits After Unilateral Vestibular Hypofunction Using Wearable Sensors.
    Paul SS; Dibble LE; Walther RG; Shelton C; Gurgel RK; Lester ME
    JAMA Otolaryngol Head Neck Surg; 2017 Oct; 143(10):1008-1014. PubMed ID: 28859201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence a shared mechanism mediates ipsi- and contralesional compensatory saccades and gait after unilateral vestibular deafferentation.
    Wagner AR; Schubert MC
    J Neurophysiol; 2020 Apr; 123(4):1486-1495. PubMed ID: 32159427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cervico-ocular reflex in normal subjects and patients with unilateral vestibular hypofunction.
    Schubert MC; Das V; Tusa RJ; Herdman SJ
    Otol Neurotol; 2004 Jan; 25(1):65-71. PubMed ID: 14724495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oculomotor strategies and their effect on reducing gaze position error.
    Schubert MC; Hall CD; Das V; Tusa RJ; Herdman SJ
    Otol Neurotol; 2010 Feb; 31(2):228-31. PubMed ID: 19887975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase-plane analysis of gaze stabilization to high acceleration head thrusts: a continuum across normal subjects and patients with loss of vestibular function.
    Peng GC; Zee DS; Minor LB
    J Neurophysiol; 2004 Apr; 91(4):1763-81. PubMed ID: 14657187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vestibular and cerebellar contribution to gaze optimality.
    Sağlam M; Glasauer S; Lehnen N
    Brain; 2014 Apr; 137(Pt 4):1080-94. PubMed ID: 24549962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large gaze shift generation while standing: the role of the vestibular system.
    Anastasopoulos D; Ziavra N; Bronstein AM
    J Neurophysiol; 2019 Nov; 122(5):1928-1936. PubMed ID: 31483710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Head movements in patients with vestibular lesion: a novel approach to functional assessment in daily life setting.
    Mijovic T; Carriot J; Zeitouni A; Cullen KE
    Otol Neurotol; 2014 Dec; 35(10):e348-57. PubMed ID: 25398041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three dimensional vestibular ocular reflex testing using a six degrees of freedom motion platform.
    Dits J; Houben MM; van der Steen J
    J Vis Exp; 2013 May; (75):e4144. PubMed ID: 23728158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Head movement kinematics are differentially altered for extended versus short duration gait exercises in individuals with vestibular loss.
    Millar JL; Zobeiri OA; Souza WH; Schubert MC; Cullen KE
    Sci Rep; 2023 Sep; 13(1):16213. PubMed ID: 37758749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gaze stabilisation exercises in vestibular rehabilitation: review of the evidence and recent clinical advances.
    Meldrum D; Jahn K
    J Neurol; 2019 Sep; 266(Suppl 1):11-18. PubMed ID: 31385017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recovery of gaze stability during vestibular regeneration.
    Haque A; Zakir M; Dickman JD
    J Neurophysiol; 2008 Feb; 99(2):853-65. PubMed ID: 18045999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three dimensional kinematics of rapid compensatory eye movements in humans with unilateral vestibular deafferentation.
    Tian JR; Crane BT; Ishiyama A; Demer JL
    Exp Brain Res; 2007 Sep; 182(2):143-55. PubMed ID: 17549461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.