BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 34366236)

  • 1. Proline metabolism as regulatory hub.
    Alvarez ME; Savouré A; Szabados L
    Trends Plant Sci; 2022 Jan; 27(1):39-55. PubMed ID: 34366236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue?
    Kavi Kishor PB; Sreenivasulu N
    Plant Cell Environ; 2014 Feb; 37(2):300-11. PubMed ID: 23790054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proline: a multifunctional amino acid.
    Szabados L; Savouré A
    Trends Plant Sci; 2010 Feb; 15(2):89-97. PubMed ID: 20036181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of polyamines, abscisic acid and proline under osmotic stress in the leaves of wheat plants.
    Pál M; Tajti J; Szalai G; Peeva V; Végh B; Janda T
    Sci Rep; 2018 Aug; 8(1):12839. PubMed ID: 30150658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proline metabolism and transport in plant development.
    Lehmann S; Funck D; Szabados L; Rentsch D
    Amino Acids; 2010 Oct; 39(4):949-62. PubMed ID: 20204435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Proline, a multifunctional amino-acid involved in plant adaptation to environmental constraints].
    Ben Rejeb K; Abdelly C; Savouré A
    Biol Aujourdhui; 2012; 206(4):291-9. PubMed ID: 23419256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA methylation involved in proline accumulation in response to osmotic stress in rice (Oryza sativa).
    Zhang CY; Wang NN; Zhang YH; Feng QZ; Yang CW; Liu B
    Genet Mol Res; 2013 Apr; 12(2):1269-77. PubMed ID: 23661451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The proline cycle as an eukaryotic redox valve.
    Zheng Y; Cabassa-Hourton C; Planchais S; Lebreton S; Savouré A
    J Exp Bot; 2021 Oct; 72(20):6856-6866. PubMed ID: 34331757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: Phytohormones, mineral nutrients and transgenics.
    Per TS; Khan NA; Reddy PS; Masood A; Hasanuzzaman M; Khan MIR; Anjum NA
    Plant Physiol Biochem; 2017 Jun; 115():126-140. PubMed ID: 28364709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in foliar proline concentration of osmotically stressed barley.
    Kocheva KV; Georgiev GI
    Z Naturforsch C J Biosci; 2008; 63(1-2):101-4. PubMed ID: 18386497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High salinity helps the halophyte Sesuvium portulacastrum in defense against Cd toxicity by maintaining redox balance and photosynthesis.
    Wali M; Gunsè B; Llugany M; Corrales I; Abdelly C; Poschenrieder C; Ghnaya T
    Planta; 2016 Aug; 244(2):333-46. PubMed ID: 27061088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TOR Signaling and Nutrient Sensing.
    Dobrenel T; Caldana C; Hanson J; Robaglia C; Vincentz M; Veit B; Meyer C
    Annu Rev Plant Biol; 2016 Apr; 67():261-85. PubMed ID: 26905651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bridging Between Proline Structure, Functions, Metabolism, and Involvement in Organism Physiology.
    Saibi W; Feki K; Yacoubi I; Brini F
    Appl Biochem Biotechnol; 2015 Aug; 176(8):2107-19. PubMed ID: 26100388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proline metabolism and redox; maintaining a balance in health and disease.
    Vettore LA; Westbrook RL; Tennant DA
    Amino Acids; 2021 Dec; 53(12):1779-1788. PubMed ID: 34291343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of proline under changing environments: a review.
    Hayat S; Hayat Q; Alyemeni MN; Wani AS; Pichtel J; Ahmad A
    Plant Signal Behav; 2012 Nov; 7(11):1456-66. PubMed ID: 22951402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SnRK1 and TOR: modulating growth-defense trade-offs in plant stress responses.
    Margalha L; Confraria A; Baena-González E
    J Exp Bot; 2019 Apr; 70(8):2261-2274. PubMed ID: 30793201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the role of plant mitochondrial metabolism and its impact on photosynthesis in both optimal and sub-optimal growth conditions.
    Araújo WL; Nunes-Nesi A; Fernie AR
    Photosynth Res; 2014 Feb; 119(1-2):141-56. PubMed ID: 23456269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. β-amylase 1 (BAM1) degrades transitory starch to sustain proline biosynthesis during drought stress.
    Zanella M; Borghi GL; Pirone C; Thalmann M; Pazmino D; Costa A; Santelia D; Trost P; Sparla F
    J Exp Bot; 2016 Mar; 67(6):1819-26. PubMed ID: 26792489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Salt stress increases the expression of p5cs gene and induces proline accumulation in cactus pear.
    Silva-Ortega CO; Ochoa-Alfaro AE; Reyes-Agüero JA; Aguado-Santacruz GA; Jiménez-Bremont JF
    Plant Physiol Biochem; 2008 Jan; 46(1):82-92. PubMed ID: 18054243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions.
    Meena M; Divyanshu K; Kumar S; Swapnil P; Zehra A; Shukla V; Yadav M; Upadhyay RS
    Heliyon; 2019 Dec; 5(12):e02952. PubMed ID: 31872123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.