BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 34366486)

  • 1. Ion Pairing and the Structure of Gel Coacervates.
    Danielsen SPO; Panyukov S; Rubinstein M
    Macromolecules; 2020 Nov; 53(21):9420-9442. PubMed ID: 34366486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Coupling in Unentangled Liquid Coacervates Formed by Oppositely Charged Polyelectrolytes.
    Aponte-Rivera C; Rubinstein M
    Macromolecules; 2021 Feb; 54(4):1783-1800. PubMed ID: 33981120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of Liquid Coacervates formed by Oppositely Charged Polyelectrolytes.
    Rubinstein M; Liao Q; Panyukov S
    Macromolecules; 2018 Dec; 51(23):9572-9588. PubMed ID: 30853717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and rheology of polyelectrolyte complex coacervates.
    Marciel AB; Srivastava S; Tirrell MV
    Soft Matter; 2018 Mar; 14(13):2454-2464. PubMed ID: 29376531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluctuations, structure, and size inside coacervates.
    Muthukumar M
    Eur Phys J E Soft Matter; 2023 Sep; 46(9):79. PubMed ID: 37682368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coacervation between Two Positively Charged Poly(ionic liquid)s.
    Zhang C; Cai Y; Zhao Q
    Macromol Rapid Commun; 2022 Sep; 43(18):e2200191. PubMed ID: 35632991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Thiouronium Group for Ultrastrong Pairing Interactions between Polyelectrolytes.
    Lteif S; Abou Shaheen S; Schlenoff JB
    J Phys Chem B; 2020 Nov; 124(47):10832-10840. PubMed ID: 33174752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crossover from Rouse to Reptation Dynamics in Salt-Free Polyelectrolyte Complex Coacervates.
    Yu B; Rauscher PM; Jackson NE; Rumyantsev AM; de Pablo JJ
    ACS Macro Lett; 2020 Sep; 9(9):1318-1324. PubMed ID: 35638633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase Behavior and Electrochemical Properties of Highly Asymmetric Redox Coacervates.
    Coria-Oriundo LL; Debais G; Apuzzo E; Herrera SE; CeolĂ­n M; Azzaroni O; Battaglini F; Tagliazucchi M
    J Phys Chem B; 2023 Sep; 127(35):7636-7647. PubMed ID: 37639479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase separation in symmetric mixtures of oppositely charged rodlike polyelectrolytes.
    Kumar R; Audus D; Fredrickson GH
    J Phys Chem B; 2010 Aug; 114(31):9956-76. PubMed ID: 20684618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interfacial energy of polypeptide complex coacervates measured via capillary adhesion.
    Priftis D; Farina R; Tirrell M
    Langmuir; 2012 Jun; 28(23):8721-9. PubMed ID: 22578030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyelectrolyte complexation of two oppositely charged symmetric polymers: A minimal theory.
    Mitra S; Kundagrami A
    J Chem Phys; 2023 Jan; 158(1):014904. PubMed ID: 36610965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Network formation of catanionic vesicles and oppositely charged polyelectrolytes. Effect of polymer charge density and hydrophobic modification.
    Antunes FE; Marques EF; Gomes R; Thuresson K; Lindman B; Miguel MG
    Langmuir; 2004 May; 20(11):4647-56. PubMed ID: 15969177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and Dynamics of Hybrid Colloid-Polyelectrolyte Coacervates.
    Rumyantsev AM; Borisov OV; de Pablo JJ
    Macromolecules; 2023 Feb; 56(4):1713-1730. PubMed ID: 36874532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and Dynamics of Hybrid Colloid-Polyelectrolyte Coacervates: Insights from Molecular Simulations.
    Yu B; Liang H; Nealey PF; Tirrell MV; Rumyantsev AM; de Pablo JJ
    Macromolecules; 2023 Sep; 56(18):7256-7270. PubMed ID: 37781214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase behavior of mixtures of oppositely charged nanoparticles: heterogeneous Poisson-Boltzmann cell model applied to lysozyme and succinylated lysozyme.
    Biesheuvel PM; Lindhoud S; de Vries R; Cohen Stuart MA
    Langmuir; 2006 Jan; 22(3):1291-300. PubMed ID: 16430296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Charge Density and Hydrophobicity-Dominated Regimes in the Phase Behavior of Complex Coacervates.
    Huang J; Laaser JE
    ACS Macro Lett; 2021 Aug; 10(8):1029-1034. PubMed ID: 35549116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymer complexation: Partially ionizable asymmetric polyelectrolytes.
    Ghosh S; Mitra S; Kundagrami A
    J Chem Phys; 2023 May; 158(20):. PubMed ID: 37226994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complexation and coacervation of like-charged polyelectrolytes inspired by mussels.
    Kim S; Huang J; Lee Y; Dutta S; Yoo HY; Jung YM; Jho Y; Zeng H; Hwang DS
    Proc Natl Acad Sci U S A; 2016 Feb; 113(7):E847-53. PubMed ID: 26831090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature-Dependent Complex Coacervation of Engineered Elastin-like Polypeptide and Hyaluronic Acid Polyelectrolytes.
    Tang JD; Caliari SR; Lampe KJ
    Biomacromolecules; 2018 Oct; 19(10):3925-3935. PubMed ID: 30185029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.