BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 34366486)

  • 21. Glycan-Presenting Coacervates Derived from Charged Poly(active esters): Preparation, Phase Behavior, and Lectin Capture.
    Illmann MD; Schäfl L; Drees F; Hartmann L; Schmidt S
    Biomacromolecules; 2023 Jun; 24(6):2532-2540. PubMed ID: 37133885
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Complexation of a Conjugated Polyelectrolyte and Impact on Optoelectronic Properties.
    Danielsen SPO; Nguyen TQ; Fredrickson GH; Segalman RA
    ACS Macro Lett; 2019 Jan; 8(1):88-94. PubMed ID: 35619414
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Binary Solutions of Hyaluronan and Lactose-Modified Chitosan: The Influence of Experimental Variables in Assembling Complex Coacervates.
    Vecchies F; Sacco P; Marsich E; Cinelli G; Lopez F; Donati I
    Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32294992
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mixed systems of hydrophobically modified polyelectrolytes: controlling rheology by charge and hydrophobe stoichiometry and interaction strength.
    Antunes FE; Lindman B; Miguel MG
    Langmuir; 2005 Oct; 21(22):10188-96. PubMed ID: 16229544
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A simple simulation model for complex coacervates.
    Bobbili SV; Milner ST
    Soft Matter; 2021 Oct; 17(40):9181-9188. PubMed ID: 34585705
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Complexation of oppositely charged polyelectrolytes: effect of discrete charge distribution along the chain.
    Potemkin II; Palyulin VV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041802. PubMed ID: 20481739
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Variational approach for electrolyte solutions: from dielectric interfaces to charged nanopores.
    Buyukdagli S; Manghi M; Palmeri J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041601. PubMed ID: 20481729
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Temperature-Responsive Peptide-Nucleotide Coacervates.
    Lu T; Nakashima KK; Spruijt E
    J Phys Chem B; 2021 Apr; 125(12):3080-3091. PubMed ID: 33757284
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of ion pairs on coacervate-driven self-assembly of block polyelectrolytes.
    Jiang J; Chen EQ; Yang S
    J Chem Phys; 2021 Apr; 154(14):144903. PubMed ID: 33858167
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coacervates and coaggregates: Liquid-liquid and liquid-solid phase transitions by native and unfolded protein complexes.
    Iwashita K; Handa A; Shiraki K
    Int J Biol Macromol; 2018 Dec; 120(Pt A):10-18. PubMed ID: 30114421
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Weak polyelectrolyte complexation driven by associative charging.
    Rathee VS; Zervoudakis AJ; Sidky H; Sikora BJ; Whitmer JK
    J Chem Phys; 2018 Mar; 148(11):114901. PubMed ID: 29566508
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transfer Matrix Model of pH Effects in Polymeric Complex Coacervation.
    Knoerdel AR; Blocher McTigue WC; Sing CE
    J Phys Chem B; 2021 Aug; 125(31):8965-8980. PubMed ID: 34328340
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transient formation of multi-phase droplets caused by the addition of a folded protein into complex coacervates with an oppositely charged surface relative to the protein.
    Sakakibara N; Ura T; Mikawa T; Sugai H; Shiraki K
    Soft Matter; 2023 Jun; 19(25):4642-4650. PubMed ID: 37291907
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Precipitation of oppositely charged polyelectrolytes in salt solutions.
    Kudlay A; Olvera de la Cruz M
    J Chem Phys; 2004 Jan; 120(1):404-12. PubMed ID: 15267302
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multiphase Coacervates Driven by Electrostatic Correlations.
    Chen X; Chen EQ; Shi AC; Yang S
    ACS Macro Lett; 2021 Aug; 10(8):1041-1047. PubMed ID: 35549117
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Monte Carlo simulations of oppositely charged macroions in solution.
    Rydén J; Ullner M; Linse P
    J Chem Phys; 2005 Jul; 123(3):34909. PubMed ID: 16080765
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Scattering evidence of positional charge correlations in polyelectrolyte complexes.
    Fang YN; Rumyantsev AM; Neitzel AE; Liang H; Heller WT; Nealey PF; Tirrell MV; de Pablo JJ
    Proc Natl Acad Sci U S A; 2023 Aug; 120(32):e2302151120. PubMed ID: 37523553
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phase Separation Behavior of Supercharged Proteins and Polyelectrolytes.
    Cummings CS; Obermeyer AC
    Biochemistry; 2018 Jan; 57(3):314-323. PubMed ID: 29210575
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling the formation of ordered nano-assemblies comprised by dendrimers and linear polyelectrolytes: the role of Coulombic interactions.
    Eleftheriou E; Karatasos K
    J Chem Phys; 2012 Oct; 137(14):144905. PubMed ID: 23061863
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrostatic Repulsion Slows Relaxations of Polyelectrolytes in Semidilute Solutions.
    Slim AH; Shi WH; Safi Samghabadi F; Faraone A; Marciel AB; Poling-Skutvik R; Conrad JC
    ACS Macro Lett; 2022 Jul; 11(7):854-860. PubMed ID: 35758769
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.