These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 34366637)

  • 1. Demystifying excessively volatile human learning: A Bayesian persistent prior and a neural approximation.
    Ryali CK; Reddy G; Yu AJ
    Adv Neural Inf Process Syst; 2018 Dec; 31():2781-2790. PubMed ID: 34366637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Devaluation of Unchosen Options: A Bayesian Account of the Provenance and Maintenance of Overly Optimistic Expectations.
    Zhou CY; Guo D; Yu AJ
    Cogsci; 2020; 42():1682-1688. PubMed ID: 34355220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning in Volatile Environments With the Bayes Factor Surprise.
    Liakoni V; Modirshanechi A; Gerstner W; Brea J
    Neural Comput; 2021 Feb; 33(2):269-340. PubMed ID: 33400898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple model for learning in volatile environments.
    Piray P; Daw ND
    PLoS Comput Biol; 2020 Jul; 16(7):e1007963. PubMed ID: 32609755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Likelihood approximation networks (LANs) for fast inference of simulation models in cognitive neuroscience.
    Fengler A; Govindarajan LN; Chen T; Frank MJ
    Elife; 2021 Apr; 10():. PubMed ID: 33821788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. State anxiety biases estimates of uncertainty and impairs reward learning in volatile environments.
    Hein TP; de Fockert J; Ruiz MH
    Neuroimage; 2021 Jan; 224():117424. PubMed ID: 33035670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Neural Correlates of Hierarchical Predictions for Perceptual Decisions.
    Weilnhammer VA; Stuke H; Sterzer P; Schmack K
    J Neurosci; 2018 May; 38(21):5008-5021. PubMed ID: 29712780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mixture of delta-rules approximation to bayesian inference in change-point problems.
    Wilson RC; Nassar MR; Gold JI
    PLoS Comput Biol; 2013; 9(7):e1003150. PubMed ID: 23935472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequential effects: Superstition or rational behavior?
    Yu AJ; Cohen JD
    Adv Neural Inf Process Syst; 2008; 21():1873-1880. PubMed ID: 26412953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The dynamic programming high-order Dynamic Bayesian Networks learning for identifying effective connectivity in human brain from fMRI.
    Dang S; Chaudhury S; Lall B; Roy PK
    J Neurosci Methods; 2017 Jun; 285():33-44. PubMed ID: 28495368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Young children combine sensory cues with learned information in a statistically efficient manner: But task complexity matters.
    Bejjanki VR; Randrup ER; Aslin RN
    Dev Sci; 2020 May; 23(3):e12912. PubMed ID: 31608526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning to Synchronize: Midfrontal Theta Dynamics during Rule Switching.
    Verbeke P; Ergo K; De Loof E; Verguts T
    J Neurosci; 2021 Feb; 41(7):1516-1528. PubMed ID: 33310756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Win-Stay, Lose-Sample: a simple sequential algorithm for approximating Bayesian inference.
    Bonawitz E; Denison S; Gopnik A; Griffiths TL
    Cogn Psychol; 2014 Nov; 74():35-65. PubMed ID: 25086501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural surprise in somatosensory Bayesian learning.
    Gijsen S; Grundei M; Lange RT; Ostwald D; Blankenburg F
    PLoS Comput Biol; 2021 Feb; 17(2):e1008068. PubMed ID: 33529181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can natural selection encode Bayesian priors?
    Ramírez JC; Marshall JAR
    J Theor Biol; 2017 Aug; 426():57-66. PubMed ID: 28536034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Population codes of prior knowledge learned through environmental regularities.
    Quax SC; Bosch SE; Peelen MV; van Gerven MAJ
    Sci Rep; 2021 Jan; 11(1):640. PubMed ID: 33436692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active Inference, Belief Propagation, and the Bethe Approximation.
    Schwöbel S; Kiebel S; Marković D
    Neural Comput; 2018 Sep; 30(9):2530-2567. PubMed ID: 29949461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Task-induced neural covariability as a signature of approximate Bayesian learning and inference.
    Lange RD; Haefner RM
    PLoS Comput Biol; 2022 Mar; 18(3):e1009557. PubMed ID: 35259152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intact Reinforcement Learning But Impaired Attentional Control During Multidimensional Probabilistic Learning in Older Adults.
    Daniel R; Radulescu A; Niv Y
    J Neurosci; 2020 Jan; 40(5):1084-1096. PubMed ID: 31826943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bayesian comparison of explicit and implicit causal inference strategies in multisensory heading perception.
    Acerbi L; Dokka K; Angelaki DE; Ma WJ
    PLoS Comput Biol; 2018 Jul; 14(7):e1006110. PubMed ID: 30052625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.