These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 34366722)

  • 1. Gene Drive Dynamics in Natural Populations: The Importance of Density Dependence, Space, and Sex.
    Dhole S; Lloyd AL; Gould F
    Annu Rev Ecol Evol Syst; 2020 Nov; 51(1):505-531. PubMed ID: 34366722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Population Dynamics of Underdominance Gene Drive Systems in Continuous Space.
    Champer J; Zhao J; Champer SE; Liu J; Messer PW
    ACS Synth Biol; 2020 Apr; 9(4):779-792. PubMed ID: 32142612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene drives for vertebrate pest control: Realistic spatial modelling of eradication probabilities and times for island mouse populations.
    Birand A; Cassey P; Ross JV; Russell JC; Thomas P; Prowse TAA
    Mol Ecol; 2022 Mar; 31(6):1907-1923. PubMed ID: 35073448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tethered homing gene drives: A new design for spatially restricted population replacement and suppression.
    Dhole S; Lloyd AL; Gould F
    Evol Appl; 2019 Sep; 12(8):1688-1702. PubMed ID: 31462923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression gene drive in continuous space can result in unstable persistence of both drive and wild-type alleles.
    Champer J; Kim IK; Champer SE; Clark AG; Messer PW
    Mol Ecol; 2021 Feb; 30(4):1086-1101. PubMed ID: 33404162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Invasion and migration of spatially self-limiting gene drives: A comparative analysis.
    Dhole S; Vella MR; Lloyd AL; Gould F
    Evol Appl; 2018 Jun; 11(5):794-808. PubMed ID: 29875820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ecological effects on underdominance threshold drives for vector control.
    Khamis D; El Mouden C; Kura K; Bonsall MB
    J Theor Biol; 2018 Nov; 456():1-15. PubMed ID: 30040965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Effect of Mating Complexity on Gene Drive Dynamics.
    Verma P; Reeves RG; Simon S; Otto M; Gokhale CS
    Am Nat; 2023 Jan; 201(1):E1-E22. PubMed ID: 36524934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pest demography critically determines the viability of synthetic gene drives for population control.
    Wilkins KE; Prowse TAA; Cassey P; Thomas PQ; Ross JV
    Math Biosci; 2018 Nov; 305():160-169. PubMed ID: 30219282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deployment of tethered gene drive for confined suppression in continuous space requires avoiding drive wave interference.
    Feng R; Champer J
    Mol Ecol; 2024 Oct; 33(19):e17530. PubMed ID: 39282691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Daisy-chain gene drives for the alteration of local populations.
    Noble C; Min J; Olejarz J; Buchthal J; Chavez A; Smidler AL; DeBenedictis EA; Church GM; Nowak MA; Esvelt KM
    Proc Natl Acad Sci U S A; 2019 Apr; 116(17):8275-8282. PubMed ID: 30940750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current CRISPR gene drive systems are likely to be highly invasive in wild populations.
    Noble C; Adlam B; Church GM; Esvelt KM; Nowak MA
    Elife; 2018 Jun; 7():. PubMed ID: 29916367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene drives in our future: challenges of and opportunities for using a self-sustaining technology in pest and vector management.
    Collins JP
    BMC Proc; 2018; 12(Suppl 8):9. PubMed ID: 30079101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulations Reveal High Efficiency and Confinement of a Population Suppression CRISPR Toxin-Antidote Gene Drive.
    Zhu Y; Champer J
    ACS Synth Biol; 2023 Mar; 12(3):809-819. PubMed ID: 36825354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adversarial interspecies relationships facilitate population suppression by gene drive in spatially explicit models.
    Liu Y; Teo W; Yang H; Champer J
    Ecol Lett; 2023 Jul; 26(7):1174-1185. PubMed ID: 37162099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and analysis of CRISPR-based underdominance toxin-antidote gene drives.
    Champer J; Champer SE; Kim IK; Clark AG; Messer PW
    Evol Appl; 2021 Apr; 14(4):1052-1069. PubMed ID: 33897820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Making waves: Comparative analysis of gene drive spread characteristics in a continuous space model.
    Pan M; Champer J
    Mol Ecol; 2023 Oct; 32(20):5673-5694. PubMed ID: 37694511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene drive escape from resistance depends on mechanism and ecology.
    Cook F; Bull JJ; Gomulkiewicz R
    Evol Appl; 2022 May; 15(5):721-734. PubMed ID: 35603023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene drives and population persistence vs elimination: The impact of spatial structure and inbreeding at low density.
    Beaghton PJ; Burt A
    Theor Popul Biol; 2022 Jun; 145():109-125. PubMed ID: 35247370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene-drive-mediated extinction is thwarted by population structure and evolution of sib mating.
    Bull JJ; Remien CH; Krone SM
    Evol Med Public Health; 2019; 2019(1):66-81. PubMed ID: 31191905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.