These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

398 related articles for article (PubMed ID: 34366818)

  • 41. Neural dynamics of object-based multifocal visual spatial attention and priming: object cueing, useful-field-of-view, and crowding.
    Foley NC; Grossberg S; Mingolla E
    Cogn Psychol; 2012 Aug; 65(1):77-117. PubMed ID: 22425615
    [TBL] [Abstract][Full Text] [Related]  

  • 42. View-invariant representations of familiar objects by neurons in the inferior temporal visual cortex.
    Booth MC; Rolls ET
    Cereb Cortex; 1998 Sep; 8(6):510-23. PubMed ID: 9758214
    [TBL] [Abstract][Full Text] [Related]  

  • 43. From brain synapses to systems for learning and memory: Object recognition, spatial navigation, timed conditioning, and movement control.
    Grossberg S
    Brain Res; 2015 Sep; 1621():270-93. PubMed ID: 25446436
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Finding and recognizing objects in natural scenes: complementary computations in the dorsal and ventral visual systems.
    Rolls ET; Webb TJ
    Front Comput Neurosci; 2014; 8():85. PubMed ID: 25161619
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Unsupervised natural visual experience rapidly reshapes size-invariant object representation in inferior temporal cortex.
    Li N; DiCarlo JJ
    Neuron; 2010 Sep; 67(6):1062-75. PubMed ID: 20869601
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques.
    Baizer JS; Ungerleider LG; Desimone R
    J Neurosci; 1991 Jan; 11(1):168-90. PubMed ID: 1702462
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A computational exploration of complementary learning mechanisms in the primate ventral visual pathway.
    Spoerer CJ; Eguchi A; Stringer SM
    Vision Res; 2016 Feb; 119():16-28. PubMed ID: 26774861
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A model of invariant object recognition in the visual system: learning rules, activation functions, lateral inhibition, and information-based performance measures.
    Rolls ET; Milward T
    Neural Comput; 2000 Nov; 12(11):2547-72. PubMed ID: 11110127
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Learning viewpoint invariant object representations using a temporal coherence principle.
    Einhäuser W; Hipp J; Eggert J; Körner E; König P
    Biol Cybern; 2005 Jul; 93(1):79-90. PubMed ID: 16021516
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Orientation Invariant Sensorimotor Object Recognition Using Cortical Grid Cells.
    Roux K; van den Heever D
    Front Neural Circuits; 2021; 15():738137. PubMed ID: 35153678
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Neurophysiological mechanisms underlying face processing within and beyond the temporal cortical visual areas.
    Rolls ET
    Philos Trans R Soc Lond B Biol Sci; 1992 Jan; 335(1273):11-20; discussion 20-1. PubMed ID: 1348130
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Interactions between ego- and allocentric neuronal representations of space.
    Neggers SF; Van der Lubbe RH; Ramsey NF; Postma A
    Neuroimage; 2006 May; 31(1):320-31. PubMed ID: 16473025
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Object-centered encoding by face-selective neurons in the cortex in the superior temporal sulcus of the monkey.
    Hasselmo ME; Rolls ET; Baylis GC; Nalwa V
    Exp Brain Res; 1989; 75(2):417-29. PubMed ID: 2721619
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hebbian learning of hand-centred representations in a hierarchical neural network model of the primate visual system.
    Born J; Galeazzi JM; Stringer SM
    PLoS One; 2017; 12(5):e0178304. PubMed ID: 28562618
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Task-context-dependent Linear Representation of Multiple Visual Objects in Human Parietal Cortex.
    Jeong SK; Xu Y
    J Cogn Neurosci; 2017 Oct; 29(10):1778-1789. PubMed ID: 28598733
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Extrinsic reference frames modify the neural substrates of object-location representations.
    Chan E; Baumann O; Bellgrove MA; Mattingley JB
    Neuropsychologia; 2013 Apr; 51(5):781-8. PubMed ID: 23422330
    [TBL] [Abstract][Full Text] [Related]  

  • 57. View-Tolerant Face Recognition and Hebbian Learning Imply Mirror-Symmetric Neural Tuning to Head Orientation.
    Leibo JZ; Liao Q; Anselmi F; Freiwald WA; Poggio T
    Curr Biol; 2017 Jan; 27(1):62-67. PubMed ID: 27916522
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The resonant brain: How attentive conscious seeing regulates action sequences that interact with attentive cognitive learning, recognition, and prediction.
    Grossberg S
    Atten Percept Psychophys; 2019 Oct; 81(7):2237-2264. PubMed ID: 31218601
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Adaptive Resonance Theory: how a brain learns to consciously attend, learn, and recognize a changing world.
    Grossberg S
    Neural Netw; 2013 Jan; 37():1-47. PubMed ID: 23149242
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Visual recognition based on temporal cortex cells: viewer-centred processing of pattern configuration.
    Perrett DI; Oram MW
    Z Naturforsch C J Biosci; 1998; 53(7-8):518-41. PubMed ID: 9755511
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.