These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

418 related articles for article (PubMed ID: 34366826)

  • 41. Features and outcomes of drugs for combination therapy as multi-targets strategy to combat Alzheimer's disease.
    Sahoo AK; Dandapat J; Dash UC; Kanhar S
    J Ethnopharmacol; 2018 Apr; 215():42-73. PubMed ID: 29248451
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Immunotherapy for Alzheimer's disease: from anti-β-amyloid to tau-based immunization strategies.
    Panza F; Frisardi V; Solfrizzi V; Imbimbo BP; Logroscino G; Santamato A; Greco A; Seripa D; Pilotto A
    Immunotherapy; 2012 Feb; 4(2):213-38. PubMed ID: 22339463
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Role of gut-brain axis, gut microbial composition, and probiotic intervention in Alzheimer's disease.
    Kesika P; Suganthy N; Sivamaruthi BS; Chaiyasut C
    Life Sci; 2021 Jan; 264():118627. PubMed ID: 33169684
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Precursor-Independent Overproduction of Beta-Amyloid in AD: Mitochondrial Dysfunction as Possible Initiator of Asymmetric RNA-Dependent βAPP mRNA Amplification. An Engine that Drives Alzheimer's Disease.
    Volloch V; Olsen BR; Rits S
    Ann Integr Mol Med; 2019; 1(1):61-74. PubMed ID: 31858090
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Innate immune activation in Alzheimer's disease.
    Wang MM; Miao D; Cao XP; Tan L; Tan L
    Ann Transl Med; 2018 May; 6(10):177. PubMed ID: 29951499
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The Ambiguous Relationship of Oxidative Stress, Tau Hyperphosphorylation, and Autophagy Dysfunction in Alzheimer's Disease.
    Liu Z; Li T; Li P; Wei N; Zhao Z; Liang H; Ji X; Chen W; Xue M; Wei J
    Oxid Med Cell Longev; 2015; 2015():352723. PubMed ID: 26171115
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer's disease.
    Barage SH; Sonawane KD
    Neuropeptides; 2015 Aug; 52():1-18. PubMed ID: 26149638
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Autophagic dysfunction in Alzheimer's disease: Cellular and molecular mechanistic approaches to halt Alzheimer's pathogenesis.
    Uddin MS; Mamun AA; Labu ZK; Hidalgo-Lanussa O; Barreto GE; Ashraf GM
    J Cell Physiol; 2019 Jun; 234(6):8094-8112. PubMed ID: 30362531
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Alzheimer's neuroborreliosis with trans-synaptic spread of infection and neurofibrillary tangles derived from intraneuronal spirochetes.
    MacDonald AB
    Med Hypotheses; 2007; 68(4):822-5. PubMed ID: 17055667
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Should drug discovery scientists still embrace the amyloid hypothesis for Alzheimer's disease or should they be looking elsewhere?
    Imbimbo BP; Ippati S; Watling M
    Expert Opin Drug Discov; 2020 Nov; 15(11):1241-1251. PubMed ID: 32686970
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Anxiety and Alzheimer's disease pathogenesis: focus on 5-HT and CRF systems in 3xTg-AD and TgF344-AD animal models.
    Reyna NC; Clark BJ; Hamilton DA; Pentkowski NS
    Front Aging Neurosci; 2023; 15():1251075. PubMed ID: 38076543
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Special Issue: Alzheimer's disease.
    Nguyen KV
    AIMS Neurosci; 2018; 5(1):74-80. PubMed ID: 32341952
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The role of P2X7R in neuroinflammation and implications in Alzheimer's disease.
    Chen YH; Lin RR; Tao QQ
    Life Sci; 2021 Apr; 271():119187. PubMed ID: 33577858
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Challenges in the treatment of Alzheimer's disease: recent progress and treatment strategies of pharmaceuticals targeting notable pathological factors.
    Kuo YC; Rajesh R
    Expert Rev Neurother; 2019 Jul; 19(7):623-652. PubMed ID: 31109210
    [No Abstract]   [Full Text] [Related]  

  • 55. Soluble pre-fibrillar tau and β-amyloid species emerge in early human Alzheimer's disease and track disease progression and cognitive decline.
    Koss DJ; Jones G; Cranston A; Gardner H; Kanaan NM; Platt B
    Acta Neuropathol; 2016 Dec; 132(6):875-895. PubMed ID: 27770234
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Current and emerging avenues for Alzheimer's disease drug targets.
    Loera-Valencia R; Cedazo-Minguez A; Kenigsberg PA; Page G; Duarte AI; Giusti P; Zusso M; Robert P; Frisoni GB; Cattaneo A; Zille M; Boltze J; Cartier N; Buee L; Johansson G; Winblad B
    J Intern Med; 2019 Oct; 286(4):398-437. PubMed ID: 31286586
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Targeting Tumor Necrosis Factor Alpha for Alzheimer's Disease.
    Decourt B; Lahiri DK; Sabbagh MN
    Curr Alzheimer Res; 2017; 14(4):412-425. PubMed ID: 27697064
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reciprocal Predictive Relationships between Amyloid and Tau Biomarkers in Alzheimer's Disease Progression: An Empirical Model.
    Krance SH; Cogo-Moreira H; Rabin JS; Black SE; Swardfager W;
    J Neurosci; 2019 Sep; 39(37):7428-7437. PubMed ID: 31350262
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Alzheimer's disease.
    Turner RS
    Semin Neurol; 2006 Nov; 26(5):499-506. PubMed ID: 17048151
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Recent progress in the development of disease-modifying therapies for Alzheimer's disease].
    Abe K
    Nihon Shinkei Seishin Yakurigaku Zasshi; 2010 Feb; 30(1):1-8. PubMed ID: 20297736
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.