These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 34367044)
1. Developing a Radiomics Signature for Supratentorial Extra-Ventricular Ependymoma Using Multimodal MR Imaging. Safai A; Shinde S; Jadhav M; Chougule T; Indoria A; Kumar M; Santosh V; Jabeen S; Beniwal M; Konar S; Saini J; Ingalhalikar M Front Neurol; 2021; 12():648092. PubMed ID: 34367044 [No Abstract] [Full Text] [Related]
2. [A multi-modal feature fusion classification model based on distance matching and discriminative representation learning for differentiation of high-grade glioma from solitary brain metastasis]. Zhang Z; Xie J; Zhong W; Liang F; Yang R; Zhen X Nan Fang Yi Ke Da Xue Xue Bao; 2024 Jan; 44(1):138-145. PubMed ID: 38293985 [TBL] [Abstract][Full Text] [Related]
3. Machine learning-based nomogram for distinguishing between supratentorial extraventricular ependymoma and supratentorial glioblastoma. Chen L; Chen W; Tang C; Li Y; Wu M; Tang L; Huang L; Li R; Li T Front Oncol; 2024; 14():1443913. PubMed ID: 39319054 [TBL] [Abstract][Full Text] [Related]
4. [An MRI multi-sequence feature imputation and fusion mutual-aid model based on sequence deletion for differentiation of high-grade from low-grade glioma]. Wu C; Zhong W; Xie J; Yang R; Wu Y; Xu Y; Wang L; Zhen X Nan Fang Yi Ke Da Xue Xue Bao; 2024 Aug; 44(8):1561-1570. PubMed ID: 39276052 [TBL] [Abstract][Full Text] [Related]
5. Accuracy of Radiomics-Based Feature Analysis on Multiparametric Magnetic Resonance Images for Noninvasive Meningioma Grading. Laukamp KR; Shakirin G; Baeßler B; Thiele F; Zopfs D; Große Hokamp N; Timmer M; Kabbasch C; Perkuhn M; Borggrefe J World Neurosurg; 2019 Dec; 132():e366-e390. PubMed ID: 31476455 [TBL] [Abstract][Full Text] [Related]
6. Imaging biomarker analysis of advanced multiparametric MRI for glioma grading. Vamvakas A; Williams SC; Theodorou K; Kapsalaki E; Fountas K; Kappas C; Vassiou K; Tsougos I Phys Med; 2019 Apr; 60():188-198. PubMed ID: 30910431 [TBL] [Abstract][Full Text] [Related]
7. Differentiation between vasogenic edema and infiltrative tumor in patients with high-grade gliomas using texture patch-based analysis. Artzi M; Liberman G; Blumenthal DT; Aizenstein O; Bokstein F; Ben Bashat D J Magn Reson Imaging; 2018 Jan; ():. PubMed ID: 29314345 [TBL] [Abstract][Full Text] [Related]
8. Deriving quantitative information from multiparametric MRI via Radiomics: Evaluation of the robustness and predictive value of radiomic features in the discrimination of low-grade versus high-grade gliomas with machine learning. Ubaldi L; Saponaro S; Giuliano A; Talamonti C; Retico A Phys Med; 2023 Mar; 107():102538. PubMed ID: 36796177 [TBL] [Abstract][Full Text] [Related]
9. Comparison of machine learning classifiers for differentiation of grade 1 from higher gradings in meningioma: A multicenter radiomics study. Hamerla G; Meyer HJ; Schob S; Ginat DT; Altman A; Lim T; Gihr GA; Horvath-Rizea D; Hoffmann KT; Surov A Magn Reson Imaging; 2019 Nov; 63():244-249. PubMed ID: 31425811 [TBL] [Abstract][Full Text] [Related]
10. Noninvasive Prediction of IDH1 Mutation and ATRX Expression Loss in Low-Grade Gliomas Using Multiparametric MR Radiomic Features. Ren Y; Zhang X; Rui W; Pang H; Qiu T; Wang J; Xie Q; Jin T; Zhang H; Chen H; Zhang Y; Lu H; Yao Z; Zhang J; Feng X J Magn Reson Imaging; 2019 Mar; 49(3):808-817. PubMed ID: 30194745 [TBL] [Abstract][Full Text] [Related]
11. Radiomics strategy for glioma grading using texture features from multiparametric MRI. Tian Q; Yan LF; Zhang X; Zhang X; Hu YC; Han Y; Liu ZC; Nan HY; Sun Q; Sun YZ; Yang Y; Yu Y; Zhang J; Hu B; Xiao G; Chen P; Tian S; Xu J; Wang W; Cui GB J Magn Reson Imaging; 2018 Dec; 48(6):1518-1528. PubMed ID: 29573085 [TBL] [Abstract][Full Text] [Related]
12. Predictive value of magnetic resonance imaging radiomics-based machine learning for disease progression in patients with high-grade glioma. Li Z; Chen L; Song Y; Dai G; Duan L; Luo Y; Wang G; Xiao Q; Li G; Bai S Quant Imaging Med Surg; 2023 Jan; 13(1):224-236. PubMed ID: 36620140 [TBL] [Abstract][Full Text] [Related]
13. Developing and validating a deep learning and radiomic model for glioma grading using multiplanar reconstructed magnetic resonance contrast-enhanced T1-weighted imaging: a robust, multi-institutional study. Ding J; Zhao R; Qiu Q; Chen J; Duan J; Cao X; Yin Y Quant Imaging Med Surg; 2022 Feb; 12(2):1517-1528. PubMed ID: 35111644 [TBL] [Abstract][Full Text] [Related]
14. Standardization of brain MR images across machines and protocols: bridging the gap for MRI-based radiomics. Carré A; Klausner G; Edjlali M; Lerousseau M; Briend-Diop J; Sun R; Ammari S; Reuzé S; Alvarez Andres E; Estienne T; Niyoteka S; Battistella E; Vakalopoulou M; Dhermain F; Paragios N; Deutsch E; Oppenheim C; Pallud J; Robert C Sci Rep; 2020 Jul; 10(1):12340. PubMed ID: 32704007 [TBL] [Abstract][Full Text] [Related]
15. Utilizing Radiomics of Peri-Lesional Edema in T2-FLAIR Subtraction Digital Images to Distinguish High-Grade Glial Tumors From Brain Metastasis. Demirel E; Dilek O J Magn Reson Imaging; 2024 Sep; ():. PubMed ID: 39254002 [TBL] [Abstract][Full Text] [Related]
16. Ensemble learning-based pretreatment MRI radiomic model for distinguishing intracranial extraventricular ependymoma from glioblastoma multiforme. He H; Long Q; Li L; Fu Y; Wang X; Qin Y; Jiang M; Tan Z; Yi X; Chen BT NMR Biomed; 2024 Dec; 37(12):e5242. PubMed ID: 39164197 [TBL] [Abstract][Full Text] [Related]
17. [High-throughput texture analysis in the distinction of single metastatic brain tumors from high-grade gliomas]. Yin HL; Li DB; Jiang Y; Li SH; Chen Y; Lin GW Zhonghua Zhong Liu Za Zhi; 2018 Nov; 40(11):841-846. PubMed ID: 30481936 [No Abstract] [Full Text] [Related]
18. A Multiparametric MRI-Based Radiomics Analysis to Efficiently Classify Tumor Subregions of Glioblastoma: A Pilot Study in Machine Learning. Chiu FY; Le NQK; Chen CY J Clin Med; 2021 May; 10(9):. PubMed ID: 34068528 [TBL] [Abstract][Full Text] [Related]
19. Classification of pulmonary lesion based on multiparametric MRI: utility of radiomics and comparison of machine learning methods. Wang X; Wan Q; Chen H; Li Y; Li X Eur Radiol; 2020 Aug; 30(8):4595-4605. PubMed ID: 32222795 [TBL] [Abstract][Full Text] [Related]
20. The Nomogram of MRI-based Radiomics with Complementary Visual Features by Machine Learning Improves Stratification of Glioblastoma Patients: A Multicenter Study. Xu Y; He X; Li Y; Pang P; Shu Z; Gong X J Magn Reson Imaging; 2021 Aug; 54(2):571-583. PubMed ID: 33559302 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]