BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

749 related articles for article (PubMed ID: 34367148)

  • 1. Cancer Immunotherapies: From Efficacy to Resistance Mechanisms - Not Only Checkpoint Matters.
    Wang S; Xie K; Liu T
    Front Immunol; 2021; 12():690112. PubMed ID: 34367148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting Tertiary Lymphoid Structures for Tumor Immunotherapy.
    Tang H; Qiu X; Timmerman C; Fu YX
    Methods Mol Biol; 2018; 1845():275-286. PubMed ID: 30141019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Immunosuppressive Niche of Soft-Tissue Sarcomas is Sustained by Tumor-Associated Macrophages and Characterized by Intratumoral Tertiary Lymphoid Structures.
    Chen L; Oke T; Siegel N; Cojocaru G; Tam AJ; Blosser RL; Swailes J; Ligon JA; Lebid A; Morris C; Levin A; Rhee DS; Johnston FM; Greer JB; Meyer CF; Ladle BH; Thompson ED; Montgomery EA; Choi W; McConkey DJ; Anders RA; Pardoll DM; Llosa NJ
    Clin Cancer Res; 2020 Aug; 26(15):4018-4030. PubMed ID: 32332015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cancer immunotherapy resistance based on immune checkpoints inhibitors: Targets, biomarkers, and remedies.
    Pérez-Ruiz E; Melero I; Kopecka J; Sarmento-Ribeiro AB; García-Aranda M; De Las Rivas J
    Drug Resist Updat; 2020 Dec; 53():100718. PubMed ID: 32736034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving Immunotherapy Efficacy in Soft-Tissue Sarcomas: A Biomarker Driven and Histotype Tailored Review.
    Roulleaux Dugage M; Nassif EF; Italiano A; Bahleda R
    Front Immunol; 2021; 12():775761. PubMed ID: 34925348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acquired Resistance to Immune Checkpoint Blockades: The Underlying Mechanisms and Potential Strategies.
    Zhou B; Gao Y; Zhang P; Chu Q
    Front Immunol; 2021; 12():693609. PubMed ID: 34194441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tumour immune microenvironment biomarkers predicting cytotoxic chemotherapy efficacy in colorectal cancer.
    Wilkinson K; Ng W; Roberts TL; Becker TM; Lim SH; Chua W; Lee CS
    J Clin Pathol; 2021 Oct; 74(10):625-634. PubMed ID: 33753562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CXCL9-expressing tumor-associated macrophages: new players in the fight against cancer.
    Marcovecchio PM; Thomas G; Salek-Ardakani S
    J Immunother Cancer; 2021 Feb; 9(2):. PubMed ID: 33637602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Editorial: CD4
    González-Navajas JM; Elkord E; Lee J
    Front Immunol; 2021; 12():737615. PubMed ID: 34552596
    [No Abstract]   [Full Text] [Related]  

  • 10. A Pan-Cancer Analysis of CD161, a Potential New Immune Checkpoint.
    Zhou X; Du J; Liu C; Zeng H; Chen Y; Liu L; Wu D
    Front Immunol; 2021; 12():688215. PubMed ID: 34305920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Tumor Microenvironment in the Response to Immune Checkpoint Blockade Therapies.
    Petitprez F; Meylan M; de Reyniès A; Sautès-Fridman C; Fridman WH
    Front Immunol; 2020; 11():784. PubMed ID: 32457745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting the vascular endothelial growth factor receptor-1 by the monoclonal antibody D16F7 to increase the activity of immune checkpoint inhibitors against cutaneous melanoma.
    Lacal PM; Atzori MG; Ruffini F; Scimeca M; Bonanno E; Cicconi R; Mattei M; Bernardini R; D'Atri S; Tentori L; Graziani G
    Pharmacol Res; 2020 Sep; 159():104957. PubMed ID: 32485280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discordance of immunotherapy response predictive biomarkers between primary lesions and paired metastases in tumours: A systematic review and meta-analysis.
    Zou Y; Hu X; Zheng S; Yang A; Li X; Tang H; Kong Y; Xie X
    EBioMedicine; 2021 Jan; 63():103137. PubMed ID: 33310681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-Omics Perspective Reveals the Different Patterns of Tumor Immune Microenvironment Based on Programmed Death Ligand 1 (PD-L1) Expression and Predictor of Responses to Immune Checkpoint Blockade across Pan-Cancer.
    Huang K; Hu M; Chen J; Wei J; Qin J; Lin S; Du H
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34068143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pushing Past the Blockade: Advancements in T Cell-Based Cancer Immunotherapies.
    Waibl Polania J; Lerner EC; Wilkinson DS; Hoyt-Miggelbrink A; Fecci PE
    Front Immunol; 2021; 12():777073. PubMed ID: 34868044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acquired resistance to cancer immunotherapy: Role of tumor-mediated immunosuppression.
    Saleh R; Elkord E
    Semin Cancer Biol; 2020 Oct; 65():13-27. PubMed ID: 31362073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Metabolic Features of Tumor-Associated Macrophages: Opportunities for Immunotherapy?
    Mojsilovic SS; Mojsilovic S; Villar VH; Santibanez JF
    Anal Cell Pathol (Amst); 2021; 2021():5523055. PubMed ID: 34476174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. T cell exhaustion initiates tertiary lymphoid structures and turbocharges cancer-immunity cycle.
    Lin WP; Li H; Sun ZJ
    EBioMedicine; 2024 Jun; 104():105154. PubMed ID: 38749300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hijacked Immune Cells in the Tumor Microenvironment: Molecular Mechanisms of Immunosuppression and Cues to Improve T Cell-Based Immunotherapy of Solid Tumors.
    Balta E; Wabnitz GH; Samstag Y
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34072260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytolytic activity score as a biomarker for antitumor immunity and clinical outcome in patients with gastric cancer.
    Hu Q; Nonaka K; Wakiyama H; Miyashita Y; Fujimoto Y; Jogo T; Hokonohara K; Nakanishi R; Hisamatsu Y; Ando K; Kimura Y; Masuda T; Oki E; Mimori K; Oda Y; Mori M
    Cancer Med; 2021 May; 10(9):3129-3138. PubMed ID: 33769705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.