These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

949 related articles for article (PubMed ID: 34367185)

  • 1. Cell Fate Reprogramming in the Era of Cancer Immunotherapy.
    Zimmermannova O; Caiado I; Ferreira AG; Pereira CF
    Front Immunol; 2021; 12():714822. PubMed ID: 34367185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reprogramming the Tumor Microenvironment to Improve Immunotherapy: Emerging Strategies and Combination Therapies.
    Datta M; Coussens LM; Nishikawa H; Hodi FS; Jain RK
    Am Soc Clin Oncol Educ Book; 2019 Jan; 39():165-174. PubMed ID: 31099649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding and Modulating Immunity With Cell Reprogramming.
    Pires CF; Rosa FF; Kurochkin I; Pereira CF
    Front Immunol; 2019; 10():2809. PubMed ID: 31921109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reprogramming Immune Cells for Enhanced Cancer Immunotherapy: Targets and Strategies.
    Dong Y; Wan Z; Gao X; Yang G; Liu L
    Front Immunol; 2021; 12():609762. PubMed ID: 33968014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epigenetic modulation of antitumor immunity for improved cancer immunotherapy.
    Dai E; Zhu Z; Wahed S; Qu Z; Storkus WJ; Guo ZS
    Mol Cancer; 2021 Dec; 20(1):171. PubMed ID: 34930302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peripheral immune-based biomarkers in cancer immunotherapy: can we realize their predictive potential?
    Nixon AB; Schalper KA; Jacobs I; Potluri S; Wang IM; Fleener C
    J Immunother Cancer; 2019 Nov; 7(1):325. PubMed ID: 31775882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revolutionizing Cancer Treatments through Stem Cell-Derived CAR T Cells for Immunotherapy: Opening New Horizons for the Future of Oncology.
    Mishra HK; Kalyuzhny A
    Cells; 2024 Sep; 13(18):. PubMed ID: 39329700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viral and Nonviral Engineering of Natural Killer Cells as Emerging Adoptive Cancer Immunotherapies.
    Matosevic S
    J Immunol Res; 2018; 2018():4054815. PubMed ID: 30306093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of Cell and Genome Modification Technologies to Generate Improved "Off-the-Shelf" CAR T and CAR NK Cells.
    Morgan MA; Büning H; Sauer M; Schambach A
    Front Immunol; 2020; 11():1965. PubMed ID: 32903482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Off-the-shelf cell therapy with induced pluripotent stem cell-derived natural killer cells.
    Saetersmoen ML; Hammer Q; Valamehr B; Kaufman DS; Malmberg KJ
    Semin Immunopathol; 2019 Jan; 41(1):59-68. PubMed ID: 30361801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dendritic Cell-Based Immunotherapy in Lung Cancer.
    Stevens D; Ingels J; Van Lint S; Vandekerckhove B; Vermaelen K
    Front Immunol; 2020; 11():620374. PubMed ID: 33679709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human iPSC Generation from Antigen-Specific T Cells.
    Nishimura T; Murmann Y; Nakauchi H
    Methods Mol Biol; 2019; 2048():53-57. PubMed ID: 31396928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dendritic Cells and Their Role in Immunotherapy.
    Gardner A; de Mingo Pulido Á; Ruffell B
    Front Immunol; 2020; 11():924. PubMed ID: 32508825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunotherapy in acute myeloid leukemia and myelodysplastic syndromes: The dawn of a new era?
    Liu Y; Bewersdorf JP; Stahl M; Zeidan AM
    Blood Rev; 2019 Mar; 34():67-83. PubMed ID: 30553527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunotherapy: enhancing the efficacy of this promising therapeutic in multiple cancers.
    Inthagard J; Edwards J; Roseweir AK
    Clin Sci (Lond); 2019 Jan; 133(2):181-193. PubMed ID: 30659159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Personalized Immuno-Oncology.
    Jain KK
    Med Princ Pract; 2021; 30(1):1-16. PubMed ID: 32841942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combination Strategies for Immune-Checkpoint Blockade and Response Prediction by Artificial Intelligence.
    Huemer F; Leisch M; Geisberger R; Melchardt T; Rinnerthaler G; Zaborsky N; Greil R
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32325898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunomodulatory nanoparticles activate cytotoxic T cells for enhancement of the effect of cancer immunotherapy.
    Wells K; Liu T; Zhu L; Yang L
    Nanoscale; 2024 Oct; 16(38):17699-17722. PubMed ID: 39257225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Head and Neck Cancer Immunotherapy beyond the Checkpoint Blockade.
    Heath BR; Michmerhuizen NL; Donnelly CR; Sansanaphongpricha K; Sun D; Brenner JC; Lei YL
    J Dent Res; 2019 Sep; 98(10):1073-1080. PubMed ID: 31340724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immune cells within the tumor microenvironment: Biological functions and roles in cancer immunotherapy.
    Lei X; Lei Y; Li JK; Du WX; Li RG; Yang J; Li J; Li F; Tan HB
    Cancer Lett; 2020 Feb; 470():126-133. PubMed ID: 31730903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 48.