These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 34367260)

  • 1. Aqueous Triple-Phase System in Microwell Array for Generating Uniform-Sized DNA Hydrogel Particles.
    Masukawa MK; Okuda Y; Takinoue M
    Front Genet; 2021; 12():705022. PubMed ID: 34367260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent progress in the synthesis of all-aqueous two-phase droplets using microfluidic approaches.
    Daradmare S; Lee CS
    Colloids Surf B Biointerfaces; 2022 Nov; 219():112795. PubMed ID: 36049253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aqueous Two-Phase System (ATPS)-Based Polymersomes for Particle Isolation and Separation.
    Seo H; Nam C; Kim E; Son J; Lee H
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):55467-55475. PubMed ID: 33237722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monodisperse hydrogel microspheres by forced droplet formation in aqueous two-phase systems.
    Ziemecka I; van Steijn V; Koper GJ; Rosso M; Brizard AM; van Esch JH; Kreutzer MT
    Lab Chip; 2011 Feb; 11(4):620-4. PubMed ID: 21125099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic Formation of Hydrogel Microcapsules with a Single Aqueous Core by Spontaneous Cross-Linking in Aqueous Two-Phase System Droplets.
    Watanabe T; Motohiro I; Ono T
    Langmuir; 2019 Feb; 35(6):2358-2367. PubMed ID: 30626189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uniform-sized neurosphere-mediated motoneuron differentiation in microwell arrays.
    Lee JM; Moon JY; Shaker MR; Sun W; Chung BG
    Electrophoresis; 2017 Dec; 38(24):3161-3167. PubMed ID: 28815632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microparticle Hydrogel Material Properties Emerge from Mixing-Induced Homogenization in a Poly(ethylene glycol) and Dextran Aqueous Two-Phase System.
    Tigner TJ; Scull G; Brown AC; Alge DL
    Macromolecules; 2023 Nov; 56(21):8518-8528. PubMed ID: 38357014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic fabrication and permeation behaviors of uniform zwitterionic hydrogel microparticles and shells.
    Park J; Byun A; Kim DH; Shin SS; Kim JH; Kim JW
    J Colloid Interface Sci; 2014 Jul; 426():162-9. PubMed ID: 24863779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidics assisted generation of innovative polysaccharide hydrogel microparticles.
    Marquis M; Davy J; Cathala B; Fang A; Renard D
    Carbohydr Polym; 2015 Feb; 116():189-99. PubMed ID: 25458289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of sodium chloride and sodium perchlorate on properties and partition behavior of solutes in aqueous dextran-polyethylene glycol and polyethylene glycol-sodium sulfate two-phase systems.
    da Silva NR; Ferreira LA; Teixeira JA; Uversky VN; Zaslavsky BY
    J Chromatogr A; 2019 Jan; 1583():28-38. PubMed ID: 30448052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [One-step generation of droplet-filled hydrogel microfibers for 3D cell culture using an all-aqueous microfluidic system].
    Zhao MQ; Liu HT; Zhang X; Gan ZQ; Qin JH
    Se Pu; 2023 Sep; 41(9):742-751. PubMed ID: 37712538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of supramolecular hydrogel microspheres via microfluidics.
    Chen W; Yang Y; Rinadi C; Zhou D; Shen AQ
    Lab Chip; 2009 Oct; 9(20):2947-51. PubMed ID: 19789748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Processing of fast-gelling hydrogel precursors in microfluidics by electrocoalescence of reactive species.
    Hauck N; Neuendorf TA; Männel MJ; Vogel L; Liu P; Stündel E; Zhang Y; Thiele J
    Soft Matter; 2021 Nov; 17(45):10312-10321. PubMed ID: 34664052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of Janus Droplets and Hydrogels with Controllable Morphologies by an Aqueous Two-Phase System on the Superamphiphobic Surface.
    Cheng Q; Chen J; Wan C; Song Y; Huang C
    ACS Appl Mater Interfaces; 2022 Oct; ():. PubMed ID: 36300357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolated Reporter Bacteria in Supramolecular Hydrogel Microwell Arrays.
    Li P; Dou X; Feng C; Müller M; Chang MW; Frettlöh M; Schönherr H
    Langmuir; 2017 Aug; 33(31):7799-7809. PubMed ID: 28486805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic Chip Device for
    Sheth S; Stealey S; Morgan NY; Zustiak SP
    Langmuir; 2021 Oct; 37(40):11793-11803. PubMed ID: 34597052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scalable Fabrication and Use of 3D Structured Microparticles Spatially Functionalized with Biomolecules.
    Lee S; de Rutte J; Dimatteo R; Koo D; Di Carlo D
    ACS Nano; 2022 Jan; 16(1):38-49. PubMed ID: 34846855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogel-encapsulated 3D microwell array for neuronal differentiation.
    Bae JH; Lee JM; Chung BG
    Biomed Mater; 2016 Feb; 11(1):015019. PubMed ID: 26928882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining Catalytic Microparticles with Droplets Formed by Phase Coexistence: Adsorption and Activity of Natural Clays at the Aqueous/Aqueous Interface.
    Pir Cakmak F; Keating CD
    Sci Rep; 2017 Jun; 7(1):3215. PubMed ID: 28607355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new method to prepare microparticles based on an Aqueous Two-Phase system (ATPS), without organic solvents.
    Dumas F; Benoit JP; Saulnier P; Roger E
    J Colloid Interface Sci; 2021 Oct; 599():642-649. PubMed ID: 33979746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.