These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 34367404)

  • 1. Numerical simulation of intracellular drug delivery via rapid squeezing.
    Nikfar M; Razizadeh M; Paul R; Zhou Y; Liu Y
    Biomicrofluidics; 2021 Jul; 15(4):044102. PubMed ID: 34367404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coarse-grained molecular simulation of extracellular vesicle squeezing for drug loading.
    Islam K; Razizadeh M; Liu Y
    Phys Chem Chem Phys; 2023 May; 25(17):12308-12321. PubMed ID: 37082907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiscale modeling of hemolysis during microfiltration.
    Nikfar M; Razizadeh M; Paul R; Liu Y
    Microfluid Nanofluidics; 2020 May; 24(5):. PubMed ID: 33235552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geometrical effects in microfluidic-based microarrays for rapid, efficient single-cell capture of mammalian stem cells and plant cells.
    Lawrenz A; Nason F; Cooper-White JJ
    Biomicrofluidics; 2012 Jun; 6(2):24112-2411217. PubMed ID: 22655021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of mechanical hemolysis in medical devices via a Lagrangian strain-based multiscale model.
    Nikfar M; Razizadeh M; Zhang J; Paul R; Wu ZJ; Liu Y
    Artif Organs; 2020 Aug; 44(8):E348-E368. PubMed ID: 32017130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leveraging the elastic deformability of polydimethylsiloxane microfluidic channels for efficient intracellular delivery.
    Alhmoud H; Alkhaled M; Kaynak BE; Hanay MS
    Lab Chip; 2023 Feb; 23(4):714-726. PubMed ID: 36472226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational fluid dynamics based Taguchi analysis on shear stress in microfluidic cerebrovascular channels.
    Garud KS; Jeong S; Lee MY
    Int J Numer Method Biomed Eng; 2023 Jul; 39(7):e3733. PubMed ID: 37221673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A numerical study on drug delivery
    Nikfar M; Razizadeh M; Paul R; Muzykantov V; Liu Y
    Nanoscale; 2021 Oct; 13(41):17359-17372. PubMed ID: 34590654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Low-Backpressure Single-Cell Point Constriction for Cytosolic Delivery Based on Rapid Membrane Deformations.
    Xing X; Pan Y; Yobas L
    Anal Chem; 2018 Feb; 90(3):1836-1844. PubMed ID: 29308899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Squeezing multiple soft particles into a constriction: Transition to clogging.
    Bielinski C; Aouane O; Harting J; Kaoui B
    Phys Rev E; 2021 Dec; 104(6-2):065101. PubMed ID: 35030949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis".
    Hewlin RL; Kizito JP
    Cardiovasc Eng Technol; 2018 Mar; 9(1):1-31. PubMed ID: 29124548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental measurement and numerical modeling of deformation behavior of breast cancer cells passing through constricted microfluidic channels.
    Keshavarz Motamed P; Abouali H; Poudineh M; Maftoon N
    Microsyst Nanoeng; 2024; 10():7. PubMed ID: 38222473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Squeezing flows of vaginal gel formulations relevant to microbicide drug delivery.
    Kieweg SL; Katz DF
    J Biomech Eng; 2006 Aug; 128(4):540-53. PubMed ID: 16813445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Off-center motion of a trapped elastic capsule in a microfluidic channel with a narrow constriction.
    Luo ZY; Bai BF
    Soft Matter; 2017 Nov; 13(44):8281-8292. PubMed ID: 29071316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Margination of Particles in Areas of Constricted Blood Flow.
    Carboni EJ; Bognet BH; Cowles DB; Ma AWK
    Biophys J; 2018 May; 114(9):2221-2230. PubMed ID: 29742415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical simulation of a compound capsule in a constricted microchannel.
    Gounley J; Draeger EW; Randles A
    Procedia Comput Sci; 2017; 108():175-184. PubMed ID: 28831291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Nanoparticle Dispersion in Red Blood Cell Suspension by the Lattice Boltzmann-Immersed Boundary Method.
    Tan J; Keller W; Sohrabi S; Yang J; Liu Y
    Nanomaterials (Basel); 2016 Feb; 6(2):. PubMed ID: 28344287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical simulation of cell squeezing through a micropore by the immersed boundary method.
    Tan J; Sohrabi S; He R; Liu Y
    Proc Inst Mech Eng C J Mech Eng Sci; 2018 Feb; 232(3):502-514. PubMed ID: 31105387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.