These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 34367404)

  • 41. [A biomechanical model for simulating the deformation of a leukocyte adhered to the surface of a blood vessel under steady shear flow].
    Liu X; Wang X; Huang H; Chen H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Mar; 20(1):30-4. PubMed ID: 12744156
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Experimental and numerical characterization of the water flow in spacer-filled channels of spiral-wound membranes.
    Bucs SS; Linares RV; Marston JO; Radu AI; Vrouwenvelder JS; Picioreanu C
    Water Res; 2015 Dec; 87():299-310. PubMed ID: 26433778
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Similar but Distinct Roles of Membrane and Interior Fluid Viscosities in Capsule Dynamics in Shear Flows.
    Li P; Zhang J
    Cardiovasc Eng Technol; 2021 Apr; 12(2):232-249. PubMed ID: 33483917
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Prediction of the moments in advection-diffusion lattice Boltzmann method. II. Attenuation of the boundary layers via double-Λ bounce-back flux scheme.
    Ginzburg I
    Phys Rev E; 2017 Jan; 95(1-1):013305. PubMed ID: 28208489
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Two-dimensional strain-hardening membrane model for large deformation behavior of multiple red blood cells in high shear conditions.
    Ye SS; Ng YC; Tan J; Leo HL; Kim S
    Theor Biol Med Model; 2014 May; 11():19. PubMed ID: 24885482
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Lattice Boltzmann simulations of liquid CO
    Chen Y; Li Y; Valocchi AJ; Christensen KT
    J Contam Hydrol; 2018 May; 212():14-27. PubMed ID: 29054787
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dispersion modeling in pore networks: A comparison of common pore-scale models and alternative approaches.
    Sadeghi MA; Agnaou M; Barralet J; Gostick J
    J Contam Hydrol; 2020 Jan; 228():103578. PubMed ID: 31767229
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A homogenized two-phase computational framework for meso- and macroscale blood flow simulations.
    Karmakar A; Burgreen GW; Rydquist G; Antaki JF
    Comput Methods Programs Biomed; 2024 Apr; 247():108090. PubMed ID: 38394788
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Numerical Analysis of the Influence of Porosity and Pore Geometry on Functionality of Scaffolds Designated for Orthopedic Regenerative Medicine.
    Prochor P; Gryko A
    Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33383866
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Quantifying the Probing and Selection of Microenvironmental Pores by Motile Immune Cells.
    Kroll J; Ruiz-Fernandez MJA; Braun MB; Merrin J; Renkawitz J
    Curr Protoc; 2022 Apr; 2(4):e407. PubMed ID: 35384410
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Numerical Simulations of the Motion and Deformation of Three RBCs during Poiseuille Flow through a Constricted Vessel Using IB-LBM.
    Wang R; Wei Y; Wu C; Sun L; Zheng W
    Comput Math Methods Med; 2018; 2018():9425375. PubMed ID: 29681999
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Entropy Generation Optimization in Squeezing Magnetohydrodynamics Flow of Casson Nanofluid with Viscous Dissipation and Joule Heating Effect.
    Zubair M; Shah Z; Dawar A; Islam S; Kumam P; Khan A
    Entropy (Basel); 2019 Jul; 21(8):. PubMed ID: 33267461
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Squeezing Mechanical Analysis and Model Establishment of the Viscoelastic Rubber-Strip-Feeding Process of the Cold-Feed Rubber Extruder.
    Liu Y; Pan Y; Hu X; Yu F
    Polymers (Basel); 2022 Aug; 14(17):. PubMed ID: 36080675
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Functional cargo delivery into mouse and human fibroblasts using a versatile microfluidic device.
    Lam KH; Fernandez-Perez A; Schmidtke DW; Munshi NV
    Biomed Microdevices; 2018 Jun; 20(3):52. PubMed ID: 29938310
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A pressure-gradient mechanism for vortex shedding in constricted channels.
    Boghosian ME; Cassel KW
    Phys Fluids (1994); 2013 Dec; 25(12):123603. PubMed ID: 24399860
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions.
    Christopher GF; Noharuddin NN; Taylor JA; Anna SL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036317. PubMed ID: 18851153
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Size-Selective Intracellular Delivery Platform.
    Saung MT; Sharei A; Adalsteinsson VA; Cho N; Kamath T; Ruiz C; Kirkpatrick J; Patel N; Mino-Kenudson M; Thayer SP; Langer R; Jensen KF; Liss AS; Love JC
    Small; 2016 Nov; 12(42):5873-5881. PubMed ID: 27594517
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Theory of the lattice Boltzmann method: acoustic and thermal properties in two and three dimensions.
    Lallemand P; Luo LS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036706. PubMed ID: 14524925
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Deformation of a Capsule in a Power-Law Shear Flow.
    Tian FB
    Comput Math Methods Med; 2016; 2016():7981386. PubMed ID: 27840656
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cell Membrane Disruption by Vertical Micro-/Nanopillars: Role of Membrane Bending and Traction Forces.
    Capozza R; Caprettini V; Gonano CA; Bosca A; Moia F; Santoro F; De Angelis F
    ACS Appl Mater Interfaces; 2018 Aug; 10(34):29107-29114. PubMed ID: 30081625
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.