BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 34367408)

  • 1. Insight on the Coupling of Plasmonic Nanoparticles from Near-Field Spectra Determined via Discrete Dipole Approximations.
    Barr JW; Gomrok S; Chaffin E; Huang X; Wang Y
    J Phys Chem C Nanomater Interfaces; 2021 Mar; 125(9):5260-5268. PubMed ID: 34367408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic couplings in Ag-Au heterodimers.
    Gomrok S; Eldridge BK; Chaffin EA; Barr JW; Huang X; Hoang TB; Wang Y
    J Chem Phys; 2024 Apr; 160(14):. PubMed ID: 38591683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling of plasmonic nanoparticles on a semiconductor substrate
    Carvalho DF; Martins MA; Fernandes PA; Correia MRP
    Phys Chem Chem Phys; 2022 Aug; 24(33):19705-19715. PubMed ID: 35811566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dipole-multipole plasmonic coupling between gold nanorods and titanium nitride nanoparticles for enhanced photothermal conversion.
    Xi M; Xu C; Zhong L; Liu C; Li N; Zhang S; Wang Z
    Phys Chem Chem Phys; 2024 Feb; 26(7):6196-6207. PubMed ID: 38305020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Coupling between Gold or Silver Nanocubes in Their Homo-Dimers: A New Coupling Mechanism at Short Separation Distances.
    Bordley JA; Hooshmand N; El-Sayed MA
    Nano Lett; 2015 May; 15(5):3391-7. PubMed ID: 25844929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isosbestic light absorption by metallic dimers: effect of interparticle electromagnetic coupling.
    Ma LX; Wang CC
    Appl Opt; 2020 Feb; 59(4):1028-1036. PubMed ID: 32225239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical transverse spin coupling through a plasmonic nanoparticle for particle-identification and field-mapping.
    Yang AP; Du LP; Meng FF; Yuan XC
    Nanoscale; 2018 May; 10(19):9286-9291. PubMed ID: 29737348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK; Eustis S; El-Sayed MA
    J Phys Chem B; 2006 Sep; 110(37):18243-53. PubMed ID: 16970442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photonic-plasmonic mode coupling in on-chip integrated optoplasmonic molecules.
    Ahn W; Boriskina SV; Hong Y; Reinhard BM
    ACS Nano; 2012 Jan; 6(1):951-60. PubMed ID: 22148502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic coupling in gold nanoring dimers: observation of coupled bonding mode.
    Tsai CY; Lin JW; Wu CY; Lin PT; Lu TW; Lee PT
    Nano Lett; 2012 Mar; 12(3):1648-54. PubMed ID: 22321005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Are Hot Spots between Two Plasmonic Nanocubes of Silver or Gold Formed between Adjacent Corners or Adjacent Facets? A DDA Examination.
    Hooshmand N; Bordley JA; El-Sayed MA
    J Phys Chem Lett; 2014 Jul; 5(13):2229-34. PubMed ID: 26279539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong optical coupling between mutually orthogonal plasmon oscillations in a silver nanosphere-nanowire joined system.
    Kim S; Imura K; Lee M; Narushima T; Okamoto H; Jeong DH
    Phys Chem Chem Phys; 2013 Mar; 15(12):4146-53. PubMed ID: 23165283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Up-Conversion Luminescence Properties of Lanthanide-Gold Hybrid Nanoparticles as Analyzed with Discrete Dipole Approximation.
    Lv R; Feng M; Parak WJ
    Nanomaterials (Basel); 2018 Nov; 8(12):. PubMed ID: 30501026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the importance of incorporating dipole reradiation in the modeling of surface enhanced Raman scattering from spheres.
    Ausman LK; Schatz GC
    J Chem Phys; 2009 Aug; 131(8):084708. PubMed ID: 19725622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of Scattering and Near Field of TiO
    Liu M; Jin X; Li S; Billeau JB; Peng T; Li H; Zhao L; Zhang Z; Claverie JP; Razzari L; Zhang J
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34714-34723. PubMed ID: 34269047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directional light emission by electric and magnetic dipoles near a nanosphere: an analytical approach based on the generalized Mie theory.
    Yao K; Zheng Y
    Opt Lett; 2021 Jan; 46(2):302-305. PubMed ID: 33449012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The plasmonic properties of gold nanoparticle clusters formed via applying an AC electric field.
    Watanabe K; Tanaka E; Ishii H; Nagao D
    Soft Matter; 2018 May; 14(17):3372-3377. PubMed ID: 29620115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring of receptor dimerization using plasmonic coupling of gold nanoparticles.
    Crow MJ; Seekell K; Ostrander JH; Wax A
    ACS Nano; 2011 Nov; 5(11):8532-40. PubMed ID: 21999459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective controlling transverse plasmon spectrum of pentagonal gold nanotube: from visible to near-infrared region.
    Liu YL; Zhu J; Weng GJ; Li JJ; Zhao JW
    Nanotechnology; 2021 Aug; 32(44):. PubMed ID: 34320484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-molecule and single-particle-based correlation studies between localized surface plasmons of dimeric nanostructures with ~1 nm gap and surface-enhanced Raman scattering.
    Lee H; Lee JH; Jin SM; Suh YD; Nam JM
    Nano Lett; 2013; 13(12):6113-21. PubMed ID: 24256433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.