BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34367722)

  • 1. Dearomatization of Unactivated Arenes via Catalytic Hydroalkylation.
    McDaniel KA; Blood AR; Smith GC; Jui NT
    ACS Catal; 2021 May; 11(9):4968-4972. PubMed ID: 34367722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydroarylation of Arenes via Reductive Radical-Polar Crossover.
    Flynn AR; McDaniel KA; Hughes ME; Vogt DB; Jui NT
    J Am Chem Soc; 2020 May; 142(20):9163-9168. PubMed ID: 32379445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intermolecular Dearomatization of Naphthalene Derivatives by Photoredox-Catalyzed 1,2-Hydroalkylation.
    Cheng YZ; Huang XL; Zhuang WH; Zhao QR; Zhang X; Mei TS; You SL
    Angew Chem Int Ed Engl; 2020 Oct; 59(41):18062-18067. PubMed ID: 32618055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dearomatization through Photoredox Hydroarylation: Discovery of a Radical-Polar Crossover Strategy.
    McDaniel KA; Jui NT
    Org Lett; 2021 Jul; 23(14):5576-5580. PubMed ID: 34232663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleophilic Aromatic Substitution of Unactivated Fluoroarenes Enabled by Organic Photoredox Catalysis.
    Pistritto VA; Schutzbach-Horton ME; Nicewicz DA
    J Am Chem Soc; 2020 Oct; 142(40):17187-17194. PubMed ID: 32986412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alkyl halides as both hydride and alkyl sources in catalytic regioselective reductive olefin hydroalkylation.
    Chen X; Rao W; Yang T; Koh MJ
    Nat Commun; 2020 Nov; 11(1):5857. PubMed ID: 33203895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regioselective Dearomative Amidoximation of Nonactivated Arenes Enabled by Photohomolytic Cleavage of N-nitrosamides.
    Yuan PF; Huang XT; Long L; Huang T; Sun CL; Yu W; Wu LZ; Chen H; Liu Q
    Angew Chem Int Ed Engl; 2024 Feb; 63(8):e202317968. PubMed ID: 38179800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy-Transfer-Enabled Dearomative Cycloaddition Reactions of Indoles/Pyrroles via Excited-State Aromatics.
    Zhu M; Zhang X; Zheng C; You SL
    Acc Chem Res; 2022 Sep; 55(17):2510-2525. PubMed ID: 35943728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper-Catalyzed Dearomative 1,2-Hydroamination.
    Davis CW; Zhang Y; Li Y; Martinelli M; Zhang J; Ungarean C; Galer P; Liu P; Sarlah D
    Angew Chem Int Ed Engl; 2024 May; ():e202407281. PubMed ID: 38779787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic Perspectives on Organic Photoredox Catalysis for Aromatic Substitutions.
    Majek M; Jacobi von Wangelin A
    Acc Chem Res; 2016 Oct; 49(10):2316-2327. PubMed ID: 27669097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of Metal-Free Dearomatization Reaction as a Sustainable Strategy to Direct Access Complex Cyclic Compounds.
    Xu X; Zhong L; Feng H; Van der Eycken EV
    Chem Rec; 2023 Oct; 23(10):e202300101. PubMed ID: 37132130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly congested spiro-compounds via photoredox-mediated dearomative annulation cascade.
    Zhou C; Shatskiy A; Temerdashev AZ; Kärkäs MD; Dinér P
    Commun Chem; 2022 Aug; 5(1):92. PubMed ID: 36697909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic Dearomatization of N-Heteroarenes with Silicon and Boron Compounds.
    Park S; Chang S
    Angew Chem Int Ed Engl; 2017 Jun; 56(27):7720-7738. PubMed ID: 28164423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining photoredox catalysis and hydrogen atom transfer for dearomative functionalization of electron rich heteroarenes.
    Ji P; Meng X; Chen J; Gao F; Xu H; Wang W
    Chem Sci; 2023 Mar; 14(12):3332-3337. PubMed ID: 36970094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photocatalytic Radical Aroylation of Unactivated Alkenes: Pathway to β-Functionalized 1,4-, 1,6-, and 1,7-Diketones.
    Sarkar S; Banerjee A; Yao W; Patterson EV; Ngai MY
    ACS Catal; 2019 Nov; 9(11):10358-10364. PubMed ID: 34040817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transition-metal-catalyzed asymmetric allylic dearomatization reactions.
    Zhuo CX; Zheng C; You SL
    Acc Chem Res; 2014 Aug; 47(8):2558-73. PubMed ID: 24940612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoredox catalysis on unactivated substrates with strongly reducing iridium photosensitizers.
    Shon JH; Kim D; Rathnayake MD; Sittel S; Weaver J; Teets TS
    Chem Sci; 2021 Jan; 12(11):4069-4078. PubMed ID: 34163678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [(DPEPhos)(bcp)Cu]PF6: A General and Broadly Applicable Copper-Based Photoredox Catalyst.
    Baguia H; Deldaele C; Michelet B; Beaudelot J; Theunissen C; Moucheron C; Evano G
    J Vis Exp; 2019 May; (147):. PubMed ID: 31180358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic Investigations into Amination of Unactivated Arenes via Cation Radical Accelerated Nucleophilic Aromatic Substitution.
    Pistritto VA; Liu S; Nicewicz DA
    J Am Chem Soc; 2022 Aug; 144(33):15118-15131. PubMed ID: 35944280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silver(I)- or copper(II)-mediated dearomatization of aromatic ynones: direct access to spirocyclic scaffolds.
    James MJ; Cuthbertson JD; O'Brien P; Taylor RJ; Unsworth WP
    Angew Chem Int Ed Engl; 2015 Jun; 54(26):7640-3. PubMed ID: 25960013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.