BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 34367736)

  • 1. Inhibition of arginase modulates T-cell response in the tumor microenvironment of lung carcinoma.
    Sosnowska A; Chlebowska-Tuz J; Matryba P; Pilch Z; Greig A; Wolny A; Grzywa TM; Rydzynska Z; Sokolowska O; Rygiel TP; Grzybowski M; Stanczak P; Blaszczyk R; Nowis D; Golab J
    Oncoimmunology; 2021; 10(1):1956143. PubMed ID: 34367736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of arginase by CB-1158 blocks myeloid cell-mediated immune suppression in the tumor microenvironment.
    Steggerda SM; Bennett MK; Chen J; Emberley E; Huang T; Janes JR; Li W; MacKinnon AL; Makkouk A; Marguier G; Murray PJ; Neou S; Pan A; Parlati F; Rodriguez MLM; Van de Velde LA; Wang T; Works M; Zhang J; Zhang W; Gross MI
    J Immunother Cancer; 2017 Dec; 5(1):101. PubMed ID: 29254508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Oral Arginase 1/2 Inhibitor Enhances the Antitumor Effect of PD-1 Inhibition in Murine Experimental Gliomas by Altering the Immunosuppressive Environment.
    Pilanc P; Wojnicki K; Roura AJ; Cyranowski S; Ellert-Miklaszewska A; Ochocka N; Gielniewski B; Grzybowski MM; Błaszczyk R; Stańczak PS; Dobrzański P; Kaminska B
    Front Oncol; 2021; 11():703465. PubMed ID: 34504786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses.
    Rodriguez PC; Quiceno DG; Zabaleta J; Ortiz B; Zea AH; Piazuelo MB; Delgado A; Correa P; Brayer J; Sotomayor EM; Antonia S; Ochoa JB; Ochoa AC
    Cancer Res; 2004 Aug; 64(16):5839-49. PubMed ID: 15313928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arginase 1-Based Immune Modulatory Vaccines Induce Anticancer Immunity and Synergize with Anti-PD-1 Checkpoint Blockade.
    Aaboe Jørgensen M; Ugel S; Linder Hübbe M; Carretta M; Perez-Penco M; Weis-Banke SE; Martinenaite E; Kopp K; Chapellier M; Adamo A; De Sanctis F; Frusteri C; Iezzi M; Zocca MB; Hargbøll Madsen D; Wakatsuki Pedersen A; Bronte V; Andersen MH
    Cancer Immunol Res; 2021 Nov; 9(11):1316-1326. PubMed ID: 34518197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppression of Myeloid Cell Arginase Activity leads to Therapeutic Response in a NSCLC Mouse Model by Activating Anti-Tumor Immunity.
    Miret JJ; Kirschmeier P; Koyama S; Zhu M; Li YY; Naito Y; Wu M; Malladi VS; Huang W; Walker W; Palakurthi S; Dranoff G; Hammerman PS; Pecot CV; Wong KK; Akbay EA
    J Immunother Cancer; 2019 Feb; 7(1):32. PubMed ID: 30728077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymorphonuclear-MDSCs Facilitate Tumor Regrowth After Radiation by Suppressing CD8
    Zhang Md J; Zhang Md L; Yang Md Y; Liu Md Q; Ma Md H; Huang Md A; Zhao Md Y; Xia Md Z; Liu Md T; Wu Md G
    Int J Radiat Oncol Biol Phys; 2021 Apr; 109(5):1533-1546. PubMed ID: 33238192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ILT4 inhibition prevents TAM- and dysfunctional T cell-mediated immunosuppression and enhances the efficacy of anti-PD-L1 therapy in NSCLC with EGFR activation.
    Chen X; Gao A; Zhang F; Yang Z; Wang S; Fang Y; Li J; Wang J; Shi W; Wang L; Zheng Y; Sun Y
    Theranostics; 2021; 11(7):3392-3416. PubMed ID: 33537094
    [No Abstract]   [Full Text] [Related]  

  • 9. Neutralization of NET-associated human ARG1 enhances cancer immunotherapy.
    Canè S; Barouni RM; Fabbi M; Cuozzo J; Fracasso G; Adamo A; Ugel S; Trovato R; De Sanctis F; Giacca M; Lawlor R; Scarpa A; Rusev B; Lionetto G; Paiella S; Salvia R; Bassi C; Mandruzzato S; Ferrini S; Bronte V
    Sci Transl Med; 2023 Mar; 15(687):eabq6221. PubMed ID: 36921034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting arginase-1 exerts antitumor effects in multiple myeloma and mitigates bortezomib-induced cardiotoxicity.
    Ramji K; Grzywa TM; Sosnowska A; Paterek A; Okninska M; Pilch Z; Barankiewicz J; Garbicz F; Borg K; Bany-Laszewicz U; Zerrouqi A; Pyrzynska B; Rodziewicz-Lurzynska A; Papiernik D; Sklepkiewicz P; Kedzierska H; Staruch A; Sadowski R; Ciepiela O; Lech-Maranda E; Juszczynski P; Mackiewicz U; Maczewski M; Nowis D; Golab J
    Sci Rep; 2022 Nov; 12(1):19660. PubMed ID: 36385153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myeloid Cell-Derived Arginase in Cancer Immune Response.
    Grzywa TM; Sosnowska A; Matryba P; Rydzynska Z; Jasinski M; Nowis D; Golab J
    Front Immunol; 2020; 11():938. PubMed ID: 32499785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunotherapy: Beyond Anti-PD-1 and Anti-PD-L1 Therapies.
    Antonia SJ; Vansteenkiste JF; Moon E
    Am Soc Clin Oncol Educ Book; 2016; 35():e450-8. PubMed ID: 27249753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arginase 1 is a key driver of immune suppression in pancreatic cancer.
    Menjivar RE; Nwosu ZC; Du W; Donahue KL; Hong HS; Espinoza C; Brown K; Velez-Delgado A; Yan W; Lima F; Bischoff A; Kadiyala P; Salas-Escabillas D; Crawford HC; Bednar F; Carpenter E; Zhang Y; Halbrook CJ; Lyssiotis CA; Pasca di Magliano M
    Elife; 2023 Feb; 12():. PubMed ID: 36727849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel Arginase Inhibitor, AZD0011, Demonstrates Immune Cell Stimulation and Antitumor Efficacy with Diverse Combination Partners.
    Doshi AS; Cantin S; Hernandez M; Srinivasan S; Tentarelli S; Griffin M; Wang Y; Pop-Damkov P; Prickett LB; Kankkonen C; Shen M; Martin MS; Wu S; Castaldi MP; Ghadially H; Varnes J; Gales S; Henry D; Hoover C; Mele DA; Simpson I; Gangl ET; Mlynarski SN; Finlay MRV; Drew L; Fawell SE; Shao W; Schuller AG
    Mol Cancer Ther; 2023 May; 22(5):630-645. PubMed ID: 36912782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased number of arginase 1-positive cells in the stroma of carcinomas compared to precursor lesions and nonneoplastic tissues.
    Jang TJ; Kim SA; Kim MK
    Pathol Res Pract; 2018 Aug; 214(8):1179-1184. PubMed ID: 29970307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immune reprogramming via PD-1 inhibition enhances early-stage lung cancer survival.
    Markowitz GJ; Havel LS; Crowley MJ; Ban Y; Lee SB; Thalappillil JS; Narula N; Bhinder B; Elemento O; Wong ST; Gao D; Altorki NK; Mittal V
    JCI Insight; 2018 Jul; 3(13):. PubMed ID: 29997286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arginase-1 specific CD8+ T cells react toward malignant and regulatory myeloid cells.
    Glöckner HJ; Martinenaite E; Landkildehus Lisle T; Grauslund J; Ahmad S; Met Ö; Thor Straten P; Hald Andersen M
    Oncoimmunology; 2024; 13(1):2318053. PubMed ID: 38404966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An injectable hydrogel using an immunomodulating gelator for amplified tumor immunotherapy by blocking the arginase pathway.
    Ren X; Wang N; Zhou Y; Song A; Jin G; Li Z; Luan Y
    Acta Biomater; 2021 Apr; 124():179-190. PubMed ID: 33524560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tumor-educated CD11bhighIalow regulatory dendritic cells suppress T cell response through arginase I.
    Liu Q; Zhang C; Sun A; Zheng Y; Wang L; Cao X
    J Immunol; 2009 May; 182(10):6207-16. PubMed ID: 19414774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Agonist anti-GITR antibody significantly enhances the therapeutic efficacy of Listeria monocytogenes-based immunotherapy.
    Shrimali R; Ahmad S; Berrong Z; Okoev G; Matevosyan A; Razavi GSE; Petit R; Gupta S; Mkrtichyan M; Khleif SN
    J Immunother Cancer; 2017 Aug; 5(1):64. PubMed ID: 28807056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.