These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 34368396)

  • 1. Bridging the"Last Millimeter" Gap of Brain-Machine Interfaces via Near-Infrared Wireless Power Transfer and Data Communications.
    Moon E; Barrow M; Lim J; Lee J; Nason SR; Costello J; Kim HS; Chestek C; Jang T; Blaauw D; Phillips JD
    ACS Photonics; 2021 May; 8(5):1430-1438. PubMed ID: 34368396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Light-Tolerant Wireless Neural Recording IC for Motor Prediction With Near-Infrared-Based Power and Data Telemetry.
    Lim J; Lee J; Moon E; Barrow M; Atzeni G; Letner JG; Costello JT; Nason SR; Patel PR; Sun Y; Patil PG; Kim HS; Chestek CA; Phillips J; Blaauw D; Sylvester D; Jang T
    IEEE J Solid-State Circuits; 2022 Apr; 57(4):1061-1074. PubMed ID: 36186085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Fully Integrated Wireless Compressed Sensing Neural Signal Acquisition System for Chronic Recording and Brain Machine Interface.
    Liu X; Zhang M; Xiong T; Richardson AG; Lucas TH; Chin PS; Etienne-Cummings R; Tran TD; Van der Spiegel J
    IEEE Trans Biomed Circuits Syst; 2016 Aug; 10(4):874-883. PubMed ID: 27448368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wireless Photometry Prototype for Tri-Color Excitation and Multi-Region Recording.
    Chakravarti A; Marangalou AH; Costanzo IM; Sen D; Sciulli M; Tsuno Y; Guler U
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The PennBMBI: Design of a General Purpose Wireless Brain-Machine-Brain Interface System.
    Liu X; Zhang M; Subei B; Richardson AG; Lucas TH; Van der Spiegel J
    IEEE Trans Biomed Circuits Syst; 2015 Apr; 9(2):248-58. PubMed ID: 25769171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gallium nitride micro-light-emitting diode structured light sources for multi-modal optical wireless communications systems.
    Griffiths AD; Herrnsdorf J; McKendry JJD; Strain MJ; Dawson MD
    Philos Trans A Math Phys Eng Sci; 2020 Apr; 378(2169):20190185. PubMed ID: 32114910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Multifunctional Battery-Free Bluetooth Low Energy Wireless Sensor Node Remotely Powered by Electromagnetic Wireless Power Transfer in Far-Field.
    Sidibe A; Loubet G; Takacs A; Dragomirescu D
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A low-power communication scheme for wireless, 1000 channel brain-machine interfaces.
    Costello JT; Nason-Tomaszewski SR; An H; Lee J; Mender MJ; Temmar H; Wallace DM; Lim J; Willsey MS; Patil PG; Jang T; Phillips JD; Kim HS; Blaauw D; Chestek CA
    J Neural Eng; 2022 Jun; 19(3):. PubMed ID: 35613546
    [No Abstract]   [Full Text] [Related]  

  • 9. 245 MHz bandwidth organic light-emitting diodes used in a gigabit optical wireless data link.
    Yoshida K; Manousiadis PP; Bian R; Chen Z; Murawski C; Gather MC; Haas H; Turnbull GA; Samuel IDW
    Nat Commun; 2020 Mar; 11(1):1171. PubMed ID: 32127529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CMOS-Based Neural Interface Device for Optogenetics.
    Tokuda T; Haruta M; Sasagawa K; Ohta J
    Adv Exp Med Biol; 2021; 1293():585-600. PubMed ID: 33398844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CMOS monolithic photodetector with a built-in 2-dimensional light direction sensor for laser diode based underwater wireless optical communications.
    Lv Z; He G; Qiu C; Fan Y; Wang H; Liu Z
    Opt Express; 2021 May; 29(11):16197-16204. PubMed ID: 34154188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Minimally-Invasive Neural Interface for Distributed Wireless Electrocorticogram Recording Systems.
    Chang SI; Park SY; Yoon E
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29342103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies in RF power communication, SAR, and temperature elevation in wireless implantable neural interfaces.
    Zhao Y; Tang L; Rennaker R; Hutchens C; Ibrahim TS
    PLoS One; 2013; 8(11):e77759. PubMed ID: 24223123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Floating EMG sensors and stimulators wirelessly powered and operated by volume conduction for networked neuroprosthetics.
    Becerra-Fajardo L; Krob MO; Minguillon J; Rodrigues C; Welsch C; Tudela-Pi M; Comerma A; Oliveira Barroso F; Schneider A; Ivorra A
    J Neuroeng Rehabil; 2022 Jun; 19(1):57. PubMed ID: 35672857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absorbance Based Light Emitting Diode Optical Sensors and Sensing Devices.
    O'Toole M; Diamond D
    Sensors (Basel); 2008 Apr; 8(4):2453-2479. PubMed ID: 27879829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultra-miniature wireless temperature sensor for thermal medicine applications.
    Khairi A; Hung SC; Paramesh J; Fedder G; Rabin Y
    Proc SPIE Int Soc Opt Eng; 2011 Jan; 7901():. PubMed ID: 28989222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wireless magnetoelectrically powered organic light-emitting diodes.
    Butscher JF; Hillebrandt S; Mischok A; Popczyk A; Booth JHH; Gather MC
    Sci Adv; 2024 Mar; 10(10):eadm7613. PubMed ID: 38446883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wireless gigabit data telemetry for large-scale neural recording.
    Kuan YC; Lo YK; Kim Y; Chang MC; Liu W
    IEEE J Biomed Health Inform; 2015 May; 19(3):949-57. PubMed ID: 25823050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical wireless link between a nanoscale antenna and a transducing rectenna.
    Dasgupta A; Mennemanteuil MM; Buret M; Cazier N; Colas-des-Francs G; Bouhelier A
    Nat Commun; 2018 May; 9(1):1992. PubMed ID: 29777104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circuit-Level Modeling and Simulation of Wireless Sensing and Energy Harvesting With Hybrid Magnetoelectric Antennas for Implantable Neural Devices.
    DAS D; Xu Z; Nasrollahpour M; Martos-Repath I; Zaeimbashi M; Khalifa A; Mittal A; Cash SS; Sun NX; Shrivastava A; Onabajo M
    IEEE Open J Circuits Syst; 2023; 4():139-155. PubMed ID: 37829556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.