These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 3436850)
1. Auditory experience affects degeneration of the ventral cochlear nucleus in Mongolian gerbils. McGinn MD; Faddis BT Hear Res; 1987 Dec; 31(3):235-44. PubMed ID: 3436850 [TBL] [Abstract][Full Text] [Related]
2. Acoustic isolation reduces degeneration of the ventral cochlear nuclei in Mongolian gerbils. McGinn MD; Faddis BT; Moore HC Hear Res; 1990 Oct; 48(3):265-74. PubMed ID: 2272935 [TBL] [Abstract][Full Text] [Related]
3. Exposure to low frequency noise during rearing induces spongiform lesions in gerbil cochlear nucleus: high frequency exposure does not. McGinn MD; Faddis BT Hear Res; 1994 Dec; 81(1-2):57-65. PubMed ID: 7737930 [TBL] [Abstract][Full Text] [Related]
4. Development of mature microcystic lesions in the cochlear nuclei of the Mongolian gerbil, Meriones unguiculatus. Statler KD; Chamberlain SC; Slepecky NB; Smith RL Hear Res; 1990 Dec; 50(1-2):275-88. PubMed ID: 2076978 [TBL] [Abstract][Full Text] [Related]
5. Glial populations in the juvenile and adult Mongolian gerbil: relationship to spongiform degeneration of the ventral cochlear nucleus. Faddis BT; McGinn MD Exp Neurol; 1993 Apr; 120(2):160-9. PubMed ID: 8491277 [TBL] [Abstract][Full Text] [Related]
6. Projections from the cochlear nucleus to the inferior colliculus in normal and neonatally cochlea-ablated gerbils. Moore DR; Kitzes LM J Comp Neurol; 1985 Oct; 240(2):180-95. PubMed ID: 4056109 [TBL] [Abstract][Full Text] [Related]
7. Long-term degeneration in the cochlear nerve and cochlear nucleus of the adult chinchilla following acoustic overstimulation. Morest DK; Kim J; Potashner SJ; Bohne BA Microsc Res Tech; 1998 May; 41(3):205-16. PubMed ID: 9605338 [TBL] [Abstract][Full Text] [Related]
8. Kangaroo rats exhibit spongiform degeneration of the central auditory system similar to that found in gerbils. McGinn MD; Faddis BT Hear Res; 1997 Feb; 104(1-2):90-100. PubMed ID: 9119769 [TBL] [Abstract][Full Text] [Related]
9. Effect of altered neuronal activity on cell size in the medial nucleus of the trapezoid body and ventral cochlear nucleus of the gerbil. Pasic TR; Moore DR; Rubel EW J Comp Neurol; 1994 Oct; 348(1):111-20. PubMed ID: 7814680 [TBL] [Abstract][Full Text] [Related]
10. Effects of profound sensorineural loss on gerbilline auditory encephalopathy. Moore HC; McGinn MD Hear Res; 1990 May; 45(3):253-64. PubMed ID: 2358416 [TBL] [Abstract][Full Text] [Related]
11. Synaptophysin in the cochlear nucleus following acoustic trauma. Muly SM; Gross JS; Morest DK; Potashner SJ Exp Neurol; 2002 Sep; 177(1):202-21. PubMed ID: 12429223 [TBL] [Abstract][Full Text] [Related]
12. Functional organization of auditory cortical fields in the Mongolian gerbil (Meriones unguiculatus): binaural 2-deoxyglucose patterns. Caird D; Scheich H; Klinke R J Comp Physiol A; 1991 Jan; 168(1):13-26. PubMed ID: 2033565 [TBL] [Abstract][Full Text] [Related]
13. Changes in the tonotopic map of the dorsal cochlear nucleus in hamsters with hair cell loss and radial nerve bundle degeneration. Meleca RJ; Kaltenbach JA; Falzarano PR Brain Res; 1997 Mar; 750(1-2):201-13. PubMed ID: 9098546 [TBL] [Abstract][Full Text] [Related]
14. Single-unit responses in the inferior colliculus: effects of neonatal unilateral cochlear ablation. Kitzes LM; Semple MN J Neurophysiol; 1985 Jun; 53(6):1483-500. PubMed ID: 4009229 [TBL] [Abstract][Full Text] [Related]
15. Age-dependent effects of the onset of a conductive hearing loss on the volume of the cochlear nucleus subdivisions and the expression of c-fos in the mongolian gerbil (Meriones unguiculatus). Gleich O; Strutz J Audiol Neurootol; 1997; 2(3):113-27. PubMed ID: 9390826 [TBL] [Abstract][Full Text] [Related]
16. Transport of radioactivity from primary auditory neurons beyond the cochlear nuclei. Carpenter MB; Batton RB; Peter P J Comp Neurol; 1978 Jun; 179(3):517-33. PubMed ID: 417099 [TBL] [Abstract][Full Text] [Related]
17. Changes in the tonotopic map of the dorsal cochlear nucleus following induction of cochlear lesions by exposure to intense sound. Kaltenbach JA; Czaja JM; Kaplan CR Hear Res; 1992 May; 59(2):213-23. PubMed ID: 1618712 [TBL] [Abstract][Full Text] [Related]
18. Projections of the trapezoid body and the superior olivary complex of the Kangaroo rat (Dipodomys merriami). Browner RH; Webster DB Brain Behav Evol; 1975; 11(5-6):322-54. PubMed ID: 1192176 [TBL] [Abstract][Full Text] [Related]
19. Plasticity of tonotopic maps in auditory midbrain following partial cochlear damage in the developing chinchilla. Harrison RV; Ibrahim D; Mount RJ Exp Brain Res; 1998 Dec; 123(4):449-60. PubMed ID: 9870604 [TBL] [Abstract][Full Text] [Related]
20. Acoustic trauma induces reemergence of the growth- and plasticity-associated protein GAP-43 in the rat auditory brainstem. Michler SA; Illing RB J Comp Neurol; 2002 Sep; 451(3):250-66. PubMed ID: 12210137 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]