BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 34368524)

  • 1. Study on the Influence of Different Factors on Spontaneous Oil Recovery of Nanosurfactants in a Tight Reservoir.
    Wang J; Zhang J; Song L; Jiang H; Xu H; Yang K; Ke W
    ACS Omega; 2021 Aug; 6(30):19378-19385. PubMed ID: 34368524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influencing Factors of Surfactant Stripping Crude Oil and Spontaneous Imbibition Mechanism of Surfactants in a Tight Reservoir.
    Cao G; Cheng Q; Liu Y; Bu R; Zhang N; Wang P
    ACS Omega; 2022 Jun; 7(22):19010-19020. PubMed ID: 35694475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imbibition and Oil Recovery Mechanism of Fracturing Fluids in Tight Sandstone Reservoirs.
    Gao H; Wang Y; Xie Y; Ni J; Li T; Wang C; Xue J
    ACS Omega; 2021 Jan; 6(3):1991-2000. PubMed ID: 33521439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation on the Mechanisms of Spontaneous Imbibition at High Pressures for Tight Oil Recovery.
    Wang C; Gao H; Qi Y; Li X; Zhang R; Fan H
    ACS Omega; 2020 Jun; 5(22):12727-12734. PubMed ID: 32548456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigations on the driving forces of the fluorocarbon surfactant-assisted spontaneous imbibition using thermogravimetric analysis (TGA).
    Chen H; Fan H; Zhang Y; Xu X; Liu L; Hou Q
    RSC Adv; 2018 Nov; 8(67):38196-38203. PubMed ID: 35559056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Effect of Crude Oil Stripped by Surfactant Action and Fluid Free Motion Characteristics in Porous Medium.
    Cheng Q; Cao G; Bai Y; Liu Y
    Molecules; 2024 Jan; 29(2):. PubMed ID: 38257201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental Investigation on Spontaneous Imbibition of Surfactant Mixtures in Low Permeability Reservoirs.
    Wang H; You Q; Zhang T; Adenutsi CD; Gao M
    ACS Omega; 2023 Apr; 8(15):14171-14176. PubMed ID: 37091392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a Novel High-Temperature Microemulsion for Enhanced Oil Recovery in Tight Oil Reservoirs.
    Xiao L; Hou J; Wang W; Raj I
    Materials (Basel); 2023 Oct; 16(19):. PubMed ID: 37834750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imbibition Characteristics and Influencing Factors of the Fracturing Fluid in a Tight Sandstone Reservoir.
    Li T; Ren D; Sun H; Wang H; Tian T; Li Q; Yan Z
    ACS Omega; 2024 Apr; 9(15):17204-17216. PubMed ID: 38645319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surfactant-Augmented Functional Silica Nanoparticle Based Nanofluid for Enhanced Oil Recovery at High Temperature and Salinity.
    Zhou Y; Wu X; Zhong X; Sun W; Pu H; Zhao JX
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):45763-45775. PubMed ID: 31729855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the Static and Dynamic Imbibition Effect of Surfactants and the Relative Mechanism in Low-Permeability Reservoirs.
    Tian F; Zhao Y; Yan Y; Gou X; Shi L; Qin F; Shi J; Lv J; Cao B; Li Y; Lu X
    ACS Omega; 2020 Jul; 5(28):17442-17449. PubMed ID: 32715229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mathematical Model of Imbibition Replacement and Optimization of Soaking Time for Massively Fractured Tight Oil Reservoirs.
    Liu Y; Zhu Y; Liao H; Yu H; Fang X; Zhang Y
    ACS Omega; 2023 Sep; 8(38):35107-35120. PubMed ID: 37779978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental investigation of nanofluid enhanced oil recovery by spontaneous imbibition.
    Zhang J; Huang H; Zhang M; Wang W
    RSC Adv; 2023 May; 13(24):16165-16174. PubMed ID: 37260713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of capillary imbibition when surfactant, polymer, and hot water are used as aqueous phase for oil recovery.
    Babadagli T
    J Colloid Interface Sci; 2002 Feb; 246(1):203-13. PubMed ID: 16290401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Mathematical Model of Surfactant Spontaneous Imbibition in a Tight Oil Matrix with Diffusion and Adsorption.
    Wang F; Cheng H; Song K
    Langmuir; 2021 Jul; 37(29):8789-8800. PubMed ID: 34255969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and performance evaluation of a novel temperature-resistant anionic/nonionic surfactant.
    Duan Y; Li Y; Chen B; Ai C; Wu J
    Sci Rep; 2024 Mar; 14(1):5710. PubMed ID: 38459239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variations in Wettability and Interfacial Tension during Alkali-Polymer Application for High and Low TAN Oils.
    Arekhov V; Hincapie RE; Clemens T; Tahir M
    Polymers (Basel); 2020 Sep; 12(10):. PubMed ID: 33003407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oil recovery performances of surfactant solutions by capillary imbibition.
    Babadagli T; Boluk Y
    J Colloid Interface Sci; 2005 Feb; 282(1):162-75. PubMed ID: 15576095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Law and Mechanism of the Sample Size Effect of Imbibition Oil Recovery of Tight Sedimentary Tuff.
    Li S; Yang S; Dong W; Wang M; Yu J
    ACS Omega; 2022 Jan; 7(2):1956-1974. PubMed ID: 35071885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.