These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 34368552)

  • 1. Photoenhanced Water Electrolysis in Separate O
    Musikajaroen S; Polin S; Sattayaporn S; Jindata W; Saenrang W; Kidkhunthod P; Nakajima H; Butburee T; Chanlek N; Meevasana W
    ACS Omega; 2021 Aug; 6(30):19647-19655. PubMed ID: 34368552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenazine-based Compound Realizing Separate Hydrogen and Oxygen Production in Electrolytic Water Splitting.
    Wu K; Li H; Liang S; Ma Y; Yang J
    Angew Chem Int Ed Engl; 2023 Jun; 62(23):e202303563. PubMed ID: 36994849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling Glucose-Assisted Cu(I)/Cu(II) Redox with Electrochemical Hydrogen Production.
    Zhang Y; Zhou B; Wei Z; Zhou W; Wang D; Tian J; Wang T; Zhao S; Liu J; Tao L; Wang S
    Adv Mater; 2021 Dec; 33(48):e2104791. PubMed ID: 34561909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Innovative Strategies for Electrocatalytic Water Splitting.
    You B; Sun Y
    Acc Chem Res; 2018 Jul; 51(7):1571-1580. PubMed ID: 29537825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decoupling Hydrogen and Oxygen Production in Acidic Water Electrolysis Using a Polytriphenylamine-Based Battery Electrode.
    Ma Y; Dong X; Wang Y; Xia Y
    Angew Chem Int Ed Engl; 2018 Mar; 57(11):2904-2908. PubMed ID: 29384260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Closed Bipolar Electrodes for Spatial Separation of H
    Goodwin S; Walsh DA
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23654-23661. PubMed ID: 28654236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organic Proton-Buffer Electrode to Separate Hydrogen and Oxygen Evolution in Acid Water Electrolysis.
    Ma Y; Guo Z; Dong X; Wang Y; Xia Y
    Angew Chem Int Ed Engl; 2019 Mar; 58(14):4622-4626. PubMed ID: 30706609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen vacancy rich Cu
    Lu L; Xu X; Yan J; Shi FN; Huo Y
    Dalton Trans; 2018 Feb; 47(6):2031-2038. PubMed ID: 29349461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide.
    Chen L; Dong X; Wang Y; Xia Y
    Nat Commun; 2016 May; 7():11741. PubMed ID: 27199009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Converting Sewage Water into H
    Hadia NMA; Abdelazeez AAA; Alzaid M; Shaban M; Mohamed SH; Hoex B; Hajjiah A; Rabia M
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35208029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coaxial Ni-S@N-Doped Carbon Nanofibers Derived Hierarchical Electrodes for Efficient H
    Zhang Y; Qiu Y; Wang Y; Li B; Zhang Y; Ma Z; Liu S
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):3937-3948. PubMed ID: 33439615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pH-Universal Decoupled Water Electrolysis Enabled by Electrocatalytic Hydrogen Gas Capacitive Chemistry.
    Zhu Z; Jiang T; Sun J; Liu Z; Xie Z; Liu S; Meng Y; Peng Q; Wang W; Zhang K; Liu H; Yuan Y; Li K; Chen W
    JACS Au; 2023 Feb; 3(2):488-497. PubMed ID: 36873693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drinking water purification by electrosynthesis of hydrogen peroxide in a power-producing PEM fuel cell.
    Li W; Bonakdarpour A; Gyenge E; Wilkinson DP
    ChemSusChem; 2013 Nov; 6(11):2137-43. PubMed ID: 24039111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Earth-Abundant Catalyst-Based Seawater Photoelectrolysis System with 17.9% Solar-to-Hydrogen Efficiency.
    Hsu SH; Miao J; Zhang L; Gao J; Wang H; Tao H; Hung SF; Vasileff A; Qiao SZ; Liu B
    Adv Mater; 2018 May; 30(18):e1707261. PubMed ID: 29569283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafast Growth of a Cu(OH)
    Anantharaj S; Sugime H; Noda S
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27327-27338. PubMed ID: 32459085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoupled Water Electrolysis Driven by 1 cm
    Lv F; Qin Z; Wu J; Pan L; Liu L; Chen Y; Zhao Y
    ChemSusChem; 2023 Jan; 16(1):e202201689. PubMed ID: 36279197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Visible-Light Photocatalytic H
    Liu B; Ning L; Zhang C; Zheng H; Liu SF; Yang H
    Inorg Chem; 2018 Jul; 57(13):8019-8027. PubMed ID: 29927594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced cyclic performance initiated via an in situ transformation of Cu/CuO nanodisk to Cu/CuO/Cu
    Periyayya U; Madhu D; Subramaniyam K; Son H; Lee IH
    Environ Sci Pollut Res Int; 2021 Feb; 28(6):6459-6469. PubMed ID: 32996093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of MOF templated Cu/CuO@TiO2 nanocomposites for synergistic hydrogen production.
    Mondal I; Pal U
    Phys Chem Chem Phys; 2016 Feb; 18(6):4780-8. PubMed ID: 26806274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of a Novel Cascade Electrolysis-Heterocatalysis System by Using Zeolite-Encaged Ultrasmall Palladium Catalysts for H
    Chen C; Wang X; Pan B; Xie W; Zhu Q; Meng Y; Hu Z; Sun Q
    Small; 2023 Jun; 19(24):e2300114. PubMed ID: 36919559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.