BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34368553)

  • 1. Highly Sensitive and Reliable microRNA Detection with a Recyclable Microfluidic Device and an Easily Assembled SERS Substrate.
    Lee T; Kwon S; Choi HJ; Lim H; Lee J
    ACS Omega; 2021 Aug; 6(30):19656-19664. PubMed ID: 34368553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ synthesis of silver nanoparticle decorated vertical nanowalls in a microfluidic device for ultrasensitive in-channel SERS sensing.
    Parisi J; Su L; Lei Y
    Lab Chip; 2013 Apr; 13(8):1501-8. PubMed ID: 23459704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic Transport of Hybrid Optoplasmonic Particles for Repeatable SERS Detection.
    Liu D; Liu C; Yuan Y; Zhang X; Huang Y; Yan S
    Anal Chem; 2021 Aug; 93(30):10672-10678. PubMed ID: 34308643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly robust, uniform and ultra-sensitive surface-enhanced Raman scattering substrates for microRNA detection fabricated by using silver nanostructures grown in gold nanobowls.
    Lee T; Wi JS; Oh A; Na HK; Lee J; Lee K; Lee TG; Haam S
    Nanoscale; 2018 Feb; 10(8):3680-3687. PubMed ID: 29323386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microfluidic device enabling surface-enhanced Raman spectroscopy at chip-integrated multifunctional nanoporous membranes.
    Krafft B; Panneerselvam R; Geissler D; Belder D
    Anal Bioanal Chem; 2020 Jan; 412(2):267-277. PubMed ID: 31797018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uniform Periodic Bowtie SERS Substrate with Narrow Nanogaps Obtained by Monitored Pulsed Electrodeposition.
    Yao X; Jiang S; Luo S; Liu BW; Huang TX; Hu S; Zhu J; Wang X; Ren B
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36505-36512. PubMed ID: 32686400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of plasmon length-based surface enhanced Raman scattering for multiplex detection on microfluidic device.
    Nguyen AH; Lee J; Il Choi H; Seok Kwak H; Jun Sim S
    Biosens Bioelectron; 2015 Aug; 70():358-65. PubMed ID: 25841120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanowire assisted repeatable DEP-SERS detection in microfluidics.
    Ge T; Yan S; Zhang L; He H; Wang L; Li S; Yuan Y; Chen G; Huang Y
    Nanotechnology; 2019 Nov; 30(47):475202. PubMed ID: 31437828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analytical optimization of nanocomposite surface-enhanced Raman spectroscopy/scattering detection in microfluidic separation devices.
    Connatser RM; Cochran M; Harrison RJ; Sepaniak MJ
    Electrophoresis; 2008 Apr; 29(7):1441-50. PubMed ID: 18386301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SERS Barcode Libraries: A Microfluidic Approach.
    Sevim S; Franco C; Chen XZ; Sorrenti A; Rodríguez-San-Miguel D; Pané S; deMello AJ; Puigmartí-Luis J
    Adv Sci (Weinh); 2020 Jun; 7(12):1903172. PubMed ID: 32596108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silver-based SERS substrates fabricated using a 3D printed microfluidic device.
    Sonexai P; Van Nguyen M; Huy BT; Lee YI
    Beilstein J Nanotechnol; 2023; 14():793-803. PubMed ID: 37496703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Green in Situ Synthesis of Clean 3D Chestnutlike Ag/WO
    Huang J; Ma D; Chen F; Chen D; Bai M; Xu K; Zhao Y
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7436-7446. PubMed ID: 28177604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of Hepatitis B virus antigen from human blood: SERS immunoassay in a microfluidic system.
    Kamińska A; Witkowska E; Winkler K; Dzięcielewski I; Weyher JL; Waluk J
    Biosens Bioelectron; 2015 Apr; 66():461-7. PubMed ID: 25497986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidics and surface-enhanced Raman spectroscopy, a win-win combination?
    Panneerselvam R; Sadat H; Höhn EM; Das A; Noothalapati H; Belder D
    Lab Chip; 2022 Feb; 22(4):665-682. PubMed ID: 35107464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid, one-step preparation of SERS substrate in microfluidic channel for detection of molecules and heavy metal ions.
    Yan S; Chu F; Zhang H; Yuan Y; Huang Y; Liu A; Wang S; Li W; Li S; Wen W
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Sep; 220():117113. PubMed ID: 31141779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silver nanoparticle-assembled micro-bowl arrays for sensitive SERS detection of pesticide residue.
    Zhu C; Zhao Q; Meng G; Wang X; Hu X; Han F; Lei Y
    Nanotechnology; 2020 May; 31(20):205303. PubMed ID: 31995539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile fabrication of microfluidic surface-enhanced Raman scattering devices via lift-up lithography.
    Wu Y; Jiang Y; Zheng X; Jia S; Zhu Z; Ren B; Ma H
    R Soc Open Sci; 2018 Apr; 5(4):172034. PubMed ID: 29765657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applied surface enhanced Raman Spectroscopy in plant hormones detection, annexation of advanced technologies: A review.
    Naqvi SMZA; Zhang Y; Ahmed S; Abdulraheem MI; Hu J; Tahir MN; Raghavan V
    Talanta; 2022 Jan; 236():122823. PubMed ID: 34635213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Efficient Photoinduced Enhanced Raman Spectroscopy (PIERS) from Plasmonic Nanoparticles Decorated 3D Semiconductor Arrays for Ultrasensitive, Portable, and Recyclable Detection of Organic Pollutants.
    Zhang M; Sun H; Chen X; Yang J; Shi L; Chen T; Bao Z; Liu J; Wu Y
    ACS Sens; 2019 Jun; 4(6):1670-1681. PubMed ID: 31117365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic integrated D-shaped optical fiber SERS probe with high sensitivity and ability of multi-molecule detection.
    Bo H; Ke Y; Yong Z; Jie Z
    Opt Express; 2023 Aug; 31(17):27304-27311. PubMed ID: 37710809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.