These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 34368560)

  • 1. Activation of Anthracite Combustion Using Pyrolysis Oil from Thermal Conversion of Waste Car Tires.
    Larionov KB; Slyusarskiy KV; Tsibulskiy SA; Kaltaev AZ; Berezikov NI; Gorshkov AS; Lavrinenko SV; Gubin VE
    ACS Omega; 2021 Aug; 6(30):19731-19739. PubMed ID: 34368560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Products distribution and pollutants releasing characteristics during pyrolysis of waste tires under different thermal process.
    Chen G; Sun B; Li J; Lin F; Xiang L; Yan B
    J Hazard Mater; 2022 Feb; 424(Pt A):127351. PubMed ID: 34879557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-combustion of coal processing waste, oil refining waste and municipal solid waste: Mechanism, characteristics, emissions.
    Glushkov DO; Paushkina KK; Shabardin DP
    Chemosphere; 2020 Feb; 240():124892. PubMed ID: 31546192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermogravimetric investigation on co-combustion characteristics of tobacco residue and high-ash anthracite coal.
    Li XG; Lv Y; Ma BG; Jian SW; Tan HB
    Bioresour Technol; 2011 Oct; 102(20):9783-7. PubMed ID: 21865028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combustion and emission analysis of hydrogenated waste polypropylene pyrolysis oil blended with diesel.
    Mangesh VL; Padmanabhan S; Tamizhdurai P; Narayanan S; Ramesh A
    J Hazard Mater; 2020 Mar; 386():121453. PubMed ID: 31928791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of high heating rates on products distribution and sulfur transformation during the pyrolysis of waste tires.
    Wang H; Hu H; Yang Y; Liu H; Tang H; Xu S; Li A; Yao H
    Waste Manag; 2020 Dec; 118():9-17. PubMed ID: 32871409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental investigation of wood combustion in a fixed bed with hot air.
    Markovic M; Bramer EA; Brem G
    Waste Manag; 2014 Jan; 34(1):49-62. PubMed ID: 24125795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyrolytic Conversion of Plastic Waste to Value-Added Products and Fuels: A Review.
    Papari S; Bamdad H; Berruti F
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34065677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of waste tire pyrolysis in a rotary kiln reactor in a wide range of pyrolysis temperature.
    Yazdani E; Hashemabadi SH; Taghizadeh A
    Waste Manag; 2019 Feb; 85():195-201. PubMed ID: 30803573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vacuum pyrolysis of waste tires with basic additives.
    Zhang X; Wang T; Ma L; Chang J
    Waste Manag; 2008 Nov; 28(11):2301-10. PubMed ID: 18162390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cr(VI)/Cr(III) and As(V)/As(III) ratio assessments in Jordanian spent oil shale produced by aerobic combustion and Anaerobic Pyrolysis.
    El-Hasan T; Szczerba W; Buzanich G; Radtke M; Riesemeier H; Kersten M
    Environ Sci Technol; 2011 Nov; 45(22):9799-805. PubMed ID: 21970732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis on integrated thermal treatment of oil sludge by Aspen Plus.
    Gong Z; Du A; Wang Z; Bai Z; Wang Z
    Waste Manag; 2019 Mar; 87():512-524. PubMed ID: 31109552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyrolysis and Oxidation of Waste Tire Oil: Analysis of Evolved Gases.
    Abdul Jameel AG; Alquaity ABS; Islam KO; Pasha AA; Khan S; Nemitallah MA; Ahmed U
    ACS Omega; 2022 Jun; 7(25):21574-21582. PubMed ID: 35785323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fuel production from waste polystyrene via pyrolysis: Kinetics and products distribution.
    Nisar J; Ali G; Shah A; Iqbal M; Khan RA; Sirajuddin ; Anwar F; Ullah R; Akhter MS
    Waste Manag; 2019 Apr; 88():236-247. PubMed ID: 31079636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Demonstration of the waste tire pyrolysis process on pilot scale in a continuous auger reactor.
    Martínez JD; Murillo R; García T; Veses A
    J Hazard Mater; 2013 Oct; 261():637-45. PubMed ID: 23995560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of Thermal Behavior of Moxa Floss Using Thermogravimetric and Pyrolysis-GC/MS Analyses.
    Lim MY; Zhang X; Huang J; Liu L; Liu Y; Zhao B; Hu H; He F; Xie J; Qiu D
    Evid Based Complement Alternat Med; 2021; 2021():6298565. PubMed ID: 33680055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermogravimetric and Kinetic Analysis of Co-Combustion of Waste Tires and Coal Blends.
    Pan DL; Jiang WT; Guo RT; Huang Y; Pan WG
    ACS Omega; 2021 Mar; 6(8):5479-5484. PubMed ID: 33681588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrogen-containing gaseous products of chrome-tanned leather shavings during pyrolysis and combustion.
    Fang C; Jiang X; Lv G; Yan J; Deng X
    Waste Manag; 2018 Aug; 78():553-558. PubMed ID: 32559944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Partial oxidation of sewage sludge briquettes in a updraft fixed bed.
    Kim M; Lee Y; Park J; Ryu C; Ohm TI
    Waste Manag; 2016 Mar; 49():204-211. PubMed ID: 26860426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feasibility study on co-processing of automobile shredder residue in coal-fired power plants via pyrolysis.
    Ren Y; Cao C; Cheng Y; Hu H; Liu H; Li X; Liu H; Yao H
    Waste Manag; 2022 Apr; 143():135-143. PubMed ID: 35255447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.