These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 3436875)

  • 1. Central venous pressure in humans during short periods of weightlessness.
    Norsk P; Foldager N; Bonde-Petersen F; Elmann-Larsen B; Johansen TS
    J Appl Physiol (1985); 1987 Dec; 63(6):2433-7. PubMed ID: 3436875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Central venous pressure in humans during microgravity.
    Foldager N; Andersen TA; Jessen FB; Ellegaard P; Stadeager C; Videbaek R; Norsk P
    J Appl Physiol (1985); 1996 Jul; 81(1):408-12. PubMed ID: 8828692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atrial distension in humans during microgravity induced by parabolic flights.
    Videbaek R; Norsk P
    J Appl Physiol (1985); 1997 Dec; 83(6):1862-6. PubMed ID: 9390956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hemodynamic responses to seated and supine lower body negative pressure: comparison with +Gz acceleration.
    Polese A; Sandler H; Montgomery LD
    Aviat Space Environ Med; 1992 Jun; 63(6):467-75. PubMed ID: 1520215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blood pressure and heart rate responses to sudden changes of gravity during exercise.
    Linnarsson D; Sundberg CJ; Tedner B; Haruna Y; Karemaker JM; Antonutto G; Di Prampero PE
    Am J Physiol; 1996 Jun; 270(6 Pt 2):H2132-42. PubMed ID: 8764266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of gravity and microgravity on intracranial pressure.
    Lawley JS; Petersen LG; Howden EJ; Sarma S; Cornwell WK; Zhang R; Whitworth LA; Williams MA; Levine BD
    J Physiol; 2017 Mar; 595(6):2115-2127. PubMed ID: 28092926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arterial pressure in humans during weightlessness induced by parabolic flights.
    Pump B; Videbaek R; Gabrielsen A; Norsk P
    J Appl Physiol (1985); 1999 Sep; 87(3):928-32. PubMed ID: 10484559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supine exercise during lower body negative pressure effectively simulates upright exercise in normal gravity.
    Murthy G; Watenpaugh DE; Ballard RE; Hargens AR
    J Appl Physiol (1985); 1994 Jun; 76(6):2742-8. PubMed ID: 7928909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supine lower body negative pressure exercise simulates metabolic and kinetic features of upright exercise.
    Boda WL; Watenpaugh DE; Ballard RE; Hargens AR
    J Appl Physiol (1985); 2000 Aug; 89(2):649-54. PubMed ID: 10926650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Objective evaluation of changes in left ventricular and atrial volumes during parabolic flight using real-time three-dimensional echocardiography.
    Caiani EG; Sugeng L; Weinert L; Capderou A; Lang RM; Vaïda P
    J Appl Physiol (1985); 2006 Aug; 101(2):460-8. PubMed ID: 16601310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. G-suit inflation to 50 mmHg alters the cardiovascular transients when entering micro-G in parabolic flight.
    Karemaker JM; Stok WJ; Latham RD
    J Gravit Physiol; 1994 May; 1(1):P33-4. PubMed ID: 11538754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectral characteristics of heart rate fluctuations during parabolic flight.
    Verheyden B; Beckers F; Aubert AE
    Eur J Appl Physiol; 2005 Dec; 95(5-6):557-68. PubMed ID: 16235070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Central venous pressure in space.
    Buckey JC; Gaffney FA; Lane LD; Levine BD; Watenpaugh DE; Wright SJ; Yancy CW; Meyer DM; Blomqvist CG
    J Appl Physiol (1985); 1996 Jul; 81(1):19-25. PubMed ID: 8828643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility of real-time 3D echocardiography in weightlessness during parabolic flight.
    Caiani EG; Sugeng L; Weinert L; Husson S; Bailliart O; Capderou A; Lang RM; Vaida P
    J Gravit Physiol; 2004 Jul; 11(2):P235-6. PubMed ID: 16240526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reducing intracranial pressure by reducing central venous pressure: assessment of potential countermeasures to spaceflight-associated neuro-ocular syndrome.
    Hansen AB; Lawley JS; Rickards CA; Howden EJ; Sarma S; Cornwell WK; Amin SB; Mugele H; Marume K; Possnig C; Whitworth LA; Williams MA; Levine BD
    J Appl Physiol (1985); 2021 Feb; 130(2):283-289. PubMed ID: 33270516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Central hemodynamics in a baboon model during microgravity induced by parabolic flight.
    Latham RD; Fanton JW; Vernalis MN; Gaffney FA; Crisman RP
    Adv Space Res; 1994; 14(8):349-58. PubMed ID: 11537938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Central venous pressure during exercise: role of muscle pump.
    Notarius CF; Magder S
    Can J Physiol Pharmacol; 1996 Jun; 74(6):647-51. PubMed ID: 8909774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circulatory filling pressures during transient microgravity induced by parabolic flight.
    Latham RD; Fanton JW; White CD; Vernalis MN; Crisman RP; Koenig SC
    Physiologist; 1993; 36(1 Suppl):S18-9. PubMed ID: 11537424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in Doppler mitral inflow patterns during parabolic flight.
    Caiani EG; Asquer G; Turiel M; Bailliart O; Cholley B; Capderou A; Vaida P
    J Gravit Physiol; 2004 Jul; 11(2):P93-4. PubMed ID: 16235430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Doppler evaluation of cardiac filling and ejection properties in humans during parabolic flight.
    Johns JP; Vernalis MN; Karemaker JM; Latham RD
    J Appl Physiol (1985); 1994 Jun; 76(6):2621-6. PubMed ID: 7928892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.