BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 34368823)

  • 1. Gold nanoparticles endowed with low-temperature colloidal stability by cyclic polyethylene glycol in ethanol.
    Aboudzadeh MA; Kruse J; Sanromán Iglesias M; Cangialosi D; Alegria A; Grzelczak M; Barroso-Bujans F
    Soft Matter; 2021 Sep; 17(33):7792-7801. PubMed ID: 34368823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyclic Polyethylene Glycol as Nanoparticle Surface Ligand.
    Aboudzadeh MA; Iturrospe A; Arbe A; Grzelczak M; Barroso-Bujans F
    ACS Macro Lett; 2020 Nov; 9(11):1604-1610. PubMed ID: 35617061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and Physicochemical Properties and Biocompatibility of Linear and Looped Polymer-Capped Gold Nanoparticles.
    Du Y; Jin J; Liang H; Jiang W
    Langmuir; 2019 Jun; 35(25):8316-8324. PubMed ID: 31140816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orthogonal analysis of functional gold nanoparticles for biomedical applications.
    Tsai DH; Lu YF; DelRio FW; Cho TJ; Guha S; Zachariah MR; Zhang F; Allen A; Hackley VA
    Anal Bioanal Chem; 2015 Nov; 407(28):8411-22. PubMed ID: 26362156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PEG-stabilized core-shell nanoparticles: impact of linear versus dendritic polymer shell architecture on colloidal properties and the reversibility of temperature-induced aggregation.
    Gillich T; Acikgöz C; Isa L; Schlüter AD; Spencer ND; Textor M
    ACS Nano; 2013 Jan; 7(1):316-29. PubMed ID: 23214719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colloidal stability of zwitterionic polymer-grafted gold nanoparticles in water.
    Durand-Gasselin C; Koerin R; Rieger J; Lequeux N; Sanson N
    J Colloid Interface Sci; 2014 Nov; 434():188-94. PubMed ID: 25203910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of thiol-containing polyethylene glycol (thiol-PEG) in the modification process of gold nanoparticles (AuNPs): stabilizer or coagulant?
    Wang W; Wei QQ; Wang J; Wang BC; Zhang SH; Yuan Z
    J Colloid Interface Sci; 2013 Aug; 404():223-9. PubMed ID: 23711661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Next-Generation Polymer Shells for Inorganic Nanoparticles are Highly Compact, Ultra-Dense, and Long-Lasting Cyclic Brushes.
    Morgese G; Shirmardi Shaghasemi B; Causin V; Zenobi-Wong M; Ramakrishna SN; Reimhult E; Benetti EM
    Angew Chem Int Ed Engl; 2017 Apr; 56(16):4507-4511. PubMed ID: 28294482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrastable-Stealth Large Gold Nanoparticles with DNA Directed Biological Functionality.
    Heo JH; Kim KI; Cho HH; Lee JW; Lee BS; Yoon S; Park KJ; Lee S; Kim J; Whang D; Lee JH
    Langmuir; 2015 Dec; 31(51):13773-82. PubMed ID: 26638691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold nanoparticle distribution in polyelectrolyte brushes loaded at different pH conditions.
    Boyaciyan D; Braun L; Löhmann O; Silvi L; Schneck E; von Klitzing R
    J Chem Phys; 2018 Oct; 149(16):163322. PubMed ID: 30384703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Making strong polyelectrolyte brushes pH-sensitive by incorporation of gold nanoparticles.
    Boyaciyan D; Krause P; von Klitzing R
    Soft Matter; 2018 May; 14(20):4029-4039. PubMed ID: 29670976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermoresponsive PDMAEMA Brushes: Effect of Gold Nanoparticle Deposition.
    Yenice Z; Schön S; Bildirir H; Genzer J; von Klitzing R
    J Phys Chem B; 2015 Aug; 119(32):10348-58. PubMed ID: 26132296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural properties of polymer-brush-grafted gold nanoparticles at the oil-water interface: insights from coarse-grained simulations.
    Quan X; Peng C; Dong J; Zhou J
    Soft Matter; 2016 Apr; 12(14):3352-9. PubMed ID: 26954721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the spacer structure on the stability of gold nanoparticles functionalized with monodentate thiolated poly(ethylene glycol) ligands.
    Schulz F; Vossmeyer T; Bastús NG; Weller H
    Langmuir; 2013 Aug; 29(31):9897-908. PubMed ID: 23829571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid POSS-containing brush on gold surfaces for protein resistance.
    Ye X; Gong J; Wang Z; Zhang Z; Han S; Jiang X
    Macromol Biosci; 2013 Jul; 13(7):921-6. PubMed ID: 23703844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PEGylated Gold Nanoparticles Grafted with N-Acetyl-L-Cysteine for Polymer Modification.
    Fajstavr D; Karasová A; Michalcová A; Ulbrich P; Slepičková Kasálková N; Siegel J; Švorčík V; Slepička P
    Nanomaterials (Basel); 2021 May; 11(6):. PubMed ID: 34071711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissecting colloidal stabilization factors in crowded polymer solutions by forming self-assembled monolayers on gold nanoparticles.
    Lang NJ; Liu B; Zhang X; Liu J
    Langmuir; 2013 May; 29(20):6018-24. PubMed ID: 23617539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversible controlled assembly of thermosensitive polymer-coated gold nanoparticles.
    Durand-Gasselin C; Sanson N; Lequeux N
    Langmuir; 2011 Oct; 27(20):12329-35. PubMed ID: 21902271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A facile method to functionalize gold nano-tripods with high suspension stability in an aqueous environment.
    Tang TY; Wang HL; Yao CT; Yang KC; Ho RM; Tsai DH
    Nanoscale; 2018 Apr; 10(16):7352-7356. PubMed ID: 29637986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.