BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 34369028)

  • 1. Allosteric regulation within the highly interconnected structural scaffold of AraC/XylS homologs tolerates a wide range of amino acid changes.
    Picard HR; Schwingen KS; Green LM; Shis DL; Egan SM; Bennett MR; Swint-Kruse L
    Proteins; 2022 Jan; 90(1):186-199. PubMed ID: 34369028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in the mechanism of the allosteric l-rhamnose responses of the AraC/XylS family transcription activators RhaS and RhaR.
    Kolin A; Balasubramaniam V; Skredenske JM; Wickstrum JR; Egan SM
    Mol Microbiol; 2008 Apr; 68(2):448-61. PubMed ID: 18366439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linker regions of the RhaS and RhaR proteins.
    Kolin A; Jevtic V; Swint-Kruse L; Egan SM
    J Bacteriol; 2007 Jan; 189(1):269-71. PubMed ID: 17071764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The AraC/XylS family activator RhaS negatively autoregulates rhaSR expression by preventing cyclic AMP receptor protein activation.
    Wickstrum JR; Skredenske JM; Balasubramaniam V; Jones K; Egan SM
    J Bacteriol; 2010 Jan; 192(1):225-32. PubMed ID: 19854903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comprehensive alanine scanning mutagenesis of the Escherichia coli transcriptional activator SoxS: identifying amino acids important for DNA binding and transcription activation.
    Griffith KL; Wolf RE
    J Mol Biol; 2002 Sep; 322(2):237-57. PubMed ID: 12217688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A large family of anti-activators accompanying XylS/AraC family regulatory proteins.
    Santiago AE; Yan MB; Tran M; Wright N; Luzader DH; Kendall MM; Ruiz-Perez F; Nataro JP
    Mol Microbiol; 2016 Jul; 101(2):314-32. PubMed ID: 27038276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amino acid contacts between sigma 70 domain 4 and the transcription activators RhaS and RhaR.
    Wickstrum JR; Egan SM
    J Bacteriol; 2004 Sep; 186(18):6277-85. PubMed ID: 15342598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leucines 193 and 194 at the N-terminal domain of the XylS protein, the positive transcriptional regulator of the TOL meta-cleavage pathway, are involved in dimerization.
    Ruíz R; Marqués S; Ramos JL
    J Bacteriol; 2003 May; 185(10):3036-41. PubMed ID: 12730162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutational analysis of the highly conserved C-terminal residues of the XylS protein, a member of the AraC family of transcriptional regulators.
    Manzanera M; Marqués S; Ramos JL
    FEBS Lett; 2000 Jul; 476(3):312-7. PubMed ID: 10913634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational and experimental investigation of constitutive behavior in AraC.
    Lowe M; Gullotti D; Damjanovic A; Cheng A; Dirla S; Schleif R
    Proteins; 2014 Dec; 82(12):3385-96. PubMed ID: 25243377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcription activation by the DNA-binding domain of the AraC family protein RhaS in the absence of its effector-binding domain.
    Wickstrum JR; Skredenske JM; Kolin A; Jin DJ; Fang J; Egan SM
    J Bacteriol; 2007 Jul; 189(14):4984-93. PubMed ID: 17513476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AraC/XylS family stress response regulators Rob, SoxS, PliA, and OpiA in the fire blight pathogen Erwinia amylovora.
    Pletzer D; Schweizer G; Weingart H
    J Bacteriol; 2014 Sep; 196(17):3098-110. PubMed ID: 24936054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of amino acid substitutions in AraC variants that respond to triacetic acid lactone.
    Frei CS; Wang Z; Qian S; Deutsch S; Sutter M; Cirino PC
    Protein Sci; 2016 Apr; 25(4):804-14. PubMed ID: 26749125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis of transcription activation by Rob, a pleiotropic AraC/XylS family regulator.
    Shi J; Wang F; Li F; Wang L; Xiong Y; Wen A; Jin Y; Jin S; Gao F; Feng Z; Li J; Zhang Y; Shang Z; Wang S; Feng Y; Lin W
    Nucleic Acids Res; 2022 Jun; 50(10):5974-5987. PubMed ID: 35641097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and properties of a truely apo form of AraC dimerization domain.
    Weldon JE; Rodgers ME; Larkin C; Schleif RF
    Proteins; 2007 Feb; 66(3):646-54. PubMed ID: 17173282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Signal-regulator interactions. Genetic analysis of the effector binding site of xylS, the benzoate-activated positive regulator of Pseudomonas TOL plasmid meta-cleavage pathway operon.
    Ramos JL; Michan C; Rojo F; Dwyer D; Timmis K
    J Mol Biol; 1990 Jan; 211(2):373-82. PubMed ID: 2407853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AraC protein, regulation of the l-arabinose operon in Escherichia coli, and the light switch mechanism of AraC action.
    Schleif R
    FEMS Microbiol Rev; 2010 Sep; 34(5):779-96. PubMed ID: 20491933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional domains of the TOL plasmid transcription factor XylS.
    Kaldalu N; Toots U; de Lorenzo V; Ustav M
    J Bacteriol; 2000 Feb; 182(4):1118-26. PubMed ID: 10648539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a small-molecule inhibitor of bacterial AraC family activators.
    Skredenske JM; Koppolu V; Kolin A; Deng J; Kettle B; Taylor B; Egan SM
    J Biomol Screen; 2013 Jun; 18(5):588-98. PubMed ID: 23364515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A genetic and physical study of the interdomain linker of E. Coli AraC protein--a trans-subunit communication pathway.
    Malaga F; Mayberry O; Park DJ; Rodgers ME; Toptygin D; Schleif RF
    Proteins; 2016 Apr; 84(4):448-60. PubMed ID: 26800223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.