These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
322 related articles for article (PubMed ID: 34369095)
1. Metabolic engineering of Yarrowia lipolytica for the production of isoprene. Shaikh KM; Odaneth AA Biotechnol Prog; 2021 Nov; 37(6):e3201. PubMed ID: 34369095 [TBL] [Abstract][Full Text] [Related]
2. A novel MVA-mediated pathway for isoprene production in engineered E. coli. Yang J; Nie Q; Liu H; Xian M; Liu H BMC Biotechnol; 2016 Jan; 16():5. PubMed ID: 26786050 [TBL] [Abstract][Full Text] [Related]
3. Enhanced isoprene biosynthesis in Saccharomyces cerevisiae by engineering of the native acetyl-CoA and mevalonic acid pathways with a push-pull-restrain strategy. Lv X; Xie W; Lu W; Guo F; Gu J; Yu H; Ye L J Biotechnol; 2014 Sep; 186():128-36. PubMed ID: 25016205 [TBL] [Abstract][Full Text] [Related]
4. Metabolic engineering of β-carotene biosynthesis in Yarrowia lipolytica. Zhang XK; Wang DN; Chen J; Liu ZJ; Wei LJ; Hua Q Biotechnol Lett; 2020 Jun; 42(6):945-956. PubMed ID: 32090297 [TBL] [Abstract][Full Text] [Related]
5. Metabolic engineering of Yarrowia lipolytica for high-level production of squalene. Liu Z; Huang M; Chen H; Lu X; Tian Y; Hu P; Zhao Q; Li P; Li C; Ji X; Liu H Bioresour Technol; 2024 Feb; 394():130233. PubMed ID: 38141883 [TBL] [Abstract][Full Text] [Related]
6. Engineering and manipulation of a mevalonate pathway in Escherichia coli for isoprene production. Liu CL; Bi HR; Bai Z; Fan LH; Tan TW Appl Microbiol Biotechnol; 2019 Jan; 103(1):239-250. PubMed ID: 30374674 [TBL] [Abstract][Full Text] [Related]
7. Pathway engineering and medium optimization for α-farnesene biosynthesis in oleaginous yeast Yarrowia lipolytica. Liu SC; Liu Z; Wei LJ; Hua Q J Biotechnol; 2020 Aug; 319():74-81. PubMed ID: 32533992 [TBL] [Abstract][Full Text] [Related]
8. Advancing metabolic engineering of Yarrowia lipolytica using the CRISPR/Cas system. Shi TQ; Huang H; Kerkhoven EJ; Ji XJ Appl Microbiol Biotechnol; 2018 Nov; 102(22):9541-9548. PubMed ID: 30238143 [TBL] [Abstract][Full Text] [Related]
9. Synthesis of Heterologous Mevalonic Acid Pathway Enzymes in Clostridium ljungdahlii for the Conversion of Fructose and of Syngas to Mevalonate and Isoprene. Diner BA; Fan J; Scotcher MC; Wells DH; Whited GM Appl Environ Microbiol; 2018 Jan; 84(1):. PubMed ID: 29054870 [TBL] [Abstract][Full Text] [Related]
10. Overproduction of Fatty Acid Ethyl Esters by the Oleaginous Yeast Yarrowia lipolytica through Metabolic Engineering and Process Optimization. Gao Q; Cao X; Huang YY; Yang JL; Chen J; Wei LJ; Hua Q ACS Synth Biol; 2018 May; 7(5):1371-1380. PubMed ID: 29694786 [TBL] [Abstract][Full Text] [Related]
11. Advances and opportunities in gene editing and gene regulation technology for Yarrowia lipolytica. Ganesan V; Spagnuolo M; Agrawal A; Smith S; Gao D; Blenner M Microb Cell Fact; 2019 Nov; 18(1):208. PubMed ID: 31783869 [TBL] [Abstract][Full Text] [Related]
12. Advanced Strategies for the Synthesis of Terpenoids in Li ZJ; Wang YZ; Wang LR; Shi TQ; Sun XM; Huang H J Agric Food Chem; 2021 Mar; 69(8):2367-2381. PubMed ID: 33595318 [TBL] [Abstract][Full Text] [Related]
13. Remodeling the Homologous Recombination Mechanism of Xu M; Yang N; Pan J; Hua Q; Li CX; Xu JH J Agric Food Chem; 2024 May; 72(17):9984-9993. PubMed ID: 38635942 [TBL] [Abstract][Full Text] [Related]
14. Increased Accumulation of Squalene in Engineered Yarrowia lipolytica through Deletion of Wei LJ; Cao X; Liu JJ; Kwak S; Jin YS; Wang W; Hua Q Appl Environ Microbiol; 2021 Aug; 87(17):e0048121. PubMed ID: 34132586 [TBL] [Abstract][Full Text] [Related]
15. Production of abscisic acid in the oleaginous yeast Yarrowia lipolytica. Arnesen JA; Jacobsen IH; Dyekjær JD; Rago D; Kristensen M; Klitgaard AK; Randelovic M; Martinez JL; Borodina I FEMS Yeast Res; 2022 Apr; 22(1):. PubMed ID: 35274684 [TBL] [Abstract][Full Text] [Related]
16. EasyCloneYALI: CRISPR/Cas9-Based Synthetic Toolbox for Engineering of the Yeast Yarrowia lipolytica. Holkenbrink C; Dam MI; Kildegaard KR; Beder J; Dahlin J; Doménech Belda D; Borodina I Biotechnol J; 2018 Sep; 13(9):e1700543. PubMed ID: 29377615 [TBL] [Abstract][Full Text] [Related]
18. Understanding Functional Roles of Native Pentose-Specific Transporters for Activating Dormant Pentose Metabolism in Yarrowia lipolytica. Ryu S; Trinh CT Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150499 [TBL] [Abstract][Full Text] [Related]
19. Genome-scale model-driven strain design for dicarboxylic acid production in Yarrowia lipolytica. Mishra P; Lee NR; Lakshmanan M; Kim M; Kim BG; Lee DY BMC Syst Biol; 2018 Mar; 12(Suppl 2):12. PubMed ID: 29560822 [TBL] [Abstract][Full Text] [Related]
20. A modular pathway engineering strategy for the high-level production of β-ionone in Yarrowia lipolytica. Lu Y; Yang Q; Lin Z; Yang X Microb Cell Fact; 2020 Feb; 19(1):49. PubMed ID: 32103761 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]