These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 34369151)

  • 1. Development of a Biosensor Platform for Phenolic Compounds Using a Transition Ligand Strategy.
    Flachbart LK; Gertzen CGW; Gohlke H; Marienhagen J
    ACS Synth Biol; 2021 Aug; 10(8):2002-2014. PubMed ID: 34369151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Displaced by Deceivers: Prevention of Biosensor Cross-Talk Is Pivotal for Successful Biosensor-Based High-Throughput Screening Campaigns.
    Flachbart LK; Sokolowsky S; Marienhagen J
    ACS Synth Biol; 2019 Aug; 8(8):1847-1857. PubMed ID: 31268296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chimeric LysR-Type Transcriptional Biosensors for Customizing Ligand Specificity Profiles toward Flavonoids.
    De Paepe B; Maertens J; Vanholme B; De Mey M
    ACS Synth Biol; 2019 Feb; 8(2):318-331. PubMed ID: 30563319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A New Biosensor for Stilbenes and a Cannabinoid Enabled by Genome Mining of a Transcriptional Regulator.
    Sun H; Zhao H; Ang EL
    ACS Synth Biol; 2020 Apr; 9(4):698-705. PubMed ID: 32078771
    [No Abstract]   [Full Text] [Related]  

  • 5. A Versatile Transcription Factor Biosensor System Responsive to Multiple Aromatic and Indole Inducers.
    Nasr MA; Timmins LR; Martin VJJ; Kwan DH
    ACS Synth Biol; 2022 Apr; 11(4):1692-1698. PubMed ID: 35316041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Biosensor Strategy for E. coli Based on Ligand-Dependent Stabilization.
    Brandsen BM; Mattheisen JM; Noel T; Fields S
    ACS Synth Biol; 2018 Sep; 7(9):1990-1999. PubMed ID: 30064218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design, Evolution, and Characterization of a Xylose Biosensor in
    Tang RQ; Wagner JM; Alper HS; Zhao XQ; Bai FW
    ACS Synth Biol; 2020 Oct; 9(10):2714-2722. PubMed ID: 32886884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modularization and Response Curve Engineering of a Naringenin-Responsive Transcriptional Biosensor.
    De Paepe B; Maertens J; Vanholme B; De Mey M
    ACS Synth Biol; 2018 May; 7(5):1303-1314. PubMed ID: 29688705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution-guided engineering of small-molecule biosensors.
    Snoek T; Chaberski EK; Ambri F; Kol S; Bjørn SP; Pang B; Barajas JF; Welner DH; Jensen MK; Keasling JD
    Nucleic Acids Res; 2020 Jan; 48(1):e3. PubMed ID: 31777933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New engineered phenolic biosensors based on the AraC regulatory protein.
    Frei CS; Qian S; Cirino PC
    Protein Eng Des Sel; 2018 Jun; 31(6):213-220. PubMed ID: 30239947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quenched ligand-directed tosylate reagents for one-step construction of turn-on fluorescent biosensors.
    Tsukiji S; Wang H; Miyagawa M; Tamura T; Takaoka Y; Hamachi I
    J Am Chem Soc; 2009 Jul; 131(25):9046-54. PubMed ID: 19499918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcription factor-based biosensors for detection of naturally occurring phenolic acids.
    Augustiniene E; Kutraite I; Valanciene E; Matulis P; Jonuskiene I; Malys N
    N Biotechnol; 2023 Dec; 78():1-12. PubMed ID: 37714511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directed Evolution of 4-Hydroxyphenylpyruvate Biosensors Based on a Dual Selection System.
    Du H; Liang Y; Li J; Yuan X; Tao F; Dong C; Shen Z; Sui G; Wang P
    Int J Mol Sci; 2024 Jan; 25(3):. PubMed ID: 38338812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering tunable biosensors for monitoring putrescine in Escherichia coli.
    Chen XF; Xia XX; Lee SY; Qian ZG
    Biotechnol Bioeng; 2018 Apr; 115(4):1014-1027. PubMed ID: 29251347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a Bacterial Biosensor for Rapid Screening of Yeast p-Coumaric Acid Production.
    Siedler S; Khatri NK; Zsohár A; Kjærbølling I; Vogt M; Hammar P; Nielsen CF; Marienhagen J; Sommer MOA; Joensson HN
    ACS Synth Biol; 2017 Oct; 6(10):1860-1869. PubMed ID: 28532147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulating Sensitivity of an Erythromycin Biosensor for Precise High-Throughput Screening of Strains with Different Characteristics.
    Wang Y; Li S; Xue N; Wang L; Zhang X; Zhao L; Guo Y; Zhang Y; Wang M
    ACS Synth Biol; 2023 Jun; 12(6):1761-1771. PubMed ID: 37198736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a gene-coded biosensor to establish a high-throughput screening platform for salidroside production.
    Yang J; Xia Y; Shen W; Yang H; Chen X
    Biochem Biophys Res Commun; 2024 Jun; 712-713():149942. PubMed ID: 38642492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering sensitivity and specificity of AraC-based biosensors responsive to triacetic acid lactone and orsellinic acid.
    Wang Z; Doshi A; Chowdhury R; Wang Y; Maranas CD; Cirino PC
    Protein Eng Des Sel; 2020 Sep; 33():. PubMed ID: 33215672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering of a TrpR-Based Biosensor for Altered Dynamic Range and Ligand Preference.
    Gong X; Zhang R; Wang J; Yan Y
    ACS Synth Biol; 2022 Jun; 11(6):2175-2183. PubMed ID: 35594503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering whole-cell biosensors with no antibiotic markers for monitoring aromatic compounds in the environment.
    de Las Heras A; de Lorenzo V
    Methods Mol Biol; 2012; 834():261-81. PubMed ID: 22144365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.