These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 34369532)
21. Unique Cobalt Sulfide/Reduced Graphene Oxide Composite as an Anode for Sodium-Ion Batteries with Superior Rate Capability and Long Cycling Stability. Peng S; Han X; Li L; Zhu Z; Cheng F; Srinivansan M; Adams S; Ramakrishna S Small; 2016 Mar; 12(10):1359-68. PubMed ID: 26763142 [TBL] [Abstract][Full Text] [Related]
22. Synthesis of a zinc ferrite effectively encapsulated by reduced graphene oxide composite anode material for high-rate lithium ion storage. Tan Q; Wang C; Cao Y; Liu X; Cao H; Wu G; Xu B J Colloid Interface Sci; 2020 Nov; 579():723-732. PubMed ID: 32668358 [TBL] [Abstract][Full Text] [Related]
23. Potassium Nickel Iron Hexacyanoferrate as Ultra-Long-Life Cathode Material for Potassium-Ion Batteries with High Energy Density. Chong S; Yang J; Sun L; Guo S; Liu Y; Liu HK ACS Nano; 2020 Aug; 14(8):9807-9818. PubMed ID: 32709197 [TBL] [Abstract][Full Text] [Related]
24. Fluorine-Doped Tin Oxide Nanocrystal/Reduced Graphene Oxide Composites as Lithium Ion Battery Anode Material with High Capacity and Cycling Stability. Xu H; Shi L; Wang Z; Liu J; Zhu J; Zhao Y; Zhang M; Yuan S ACS Appl Mater Interfaces; 2015 Dec; 7(49):27486-93. PubMed ID: 26606370 [TBL] [Abstract][Full Text] [Related]
26. Facile Hydrothermal Synthesis of VS2/Graphene Nanocomposites with Superior High-Rate Capability as Lithium-Ion Battery Cathodes. Fang W; Zhao H; Xie Y; Fang J; Xu J; Chen Z ACS Appl Mater Interfaces; 2015 Jun; 7(23):13044-52. PubMed ID: 26016687 [TBL] [Abstract][Full Text] [Related]
27. Highly concentrated electrolyte solutions for 4 V class potassium-ion batteries. Hosaka T; Kubota K; Kojima H; Komaba S Chem Commun (Camb); 2018 Jul; 54(60):8387-8390. PubMed ID: 29998275 [TBL] [Abstract][Full Text] [Related]
28. Iodine encapsulated in mesoporous carbon enabling high-efficiency capacitive potassium-Ion storage. Qian M; Tang M; Yang J; Wei W; Chen M; Chen J; Xu J; Liu Q; Wang H J Colloid Interface Sci; 2019 Sep; 551():177-183. PubMed ID: 31078099 [TBL] [Abstract][Full Text] [Related]
29. Reduced graphene oxide as a stable and high-capacity cathode material for Na-ion batteries. Ali G; Mehmood A; Ha HY; Kim J; Chung KY Sci Rep; 2017 Jan; 7():40910. PubMed ID: 28098231 [TBL] [Abstract][Full Text] [Related]
30. Scalable synthesis of TiO2/graphene nanostructured composite with high-rate performance for lithium ion batteries. Xin X; Zhou X; Wu J; Yao X; Liu Z ACS Nano; 2012 Dec; 6(12):11035-43. PubMed ID: 23185962 [TBL] [Abstract][Full Text] [Related]
31. Surface-Confined SnS Li D; Sun Q; Zhang Y; Chen L; Wang Z; Liang Z; Si P; Ci L ChemSusChem; 2019 Jun; 12(12):2689-2700. PubMed ID: 30997950 [TBL] [Abstract][Full Text] [Related]
32. Graphene Oxide Wrapped CuV Liu Y; Li Q; Ma K; Yang G; Wang C ACS Nano; 2019 Oct; 13(10):12081-12089. PubMed ID: 31553172 [TBL] [Abstract][Full Text] [Related]
33. Mesoporous Hybrids of Reduced Graphene Oxide and Vanadium Pentoxide for Enhanced Performance in Lithium-Ion Batteries and Electrochemical Capacitors. Pandey GP; Liu T; Brown E; Yang Y; Li Y; Sun XS; Fang Y; Li J ACS Appl Mater Interfaces; 2016 Apr; 8(14):9200-10. PubMed ID: 27010675 [TBL] [Abstract][Full Text] [Related]
34. Surface modification of tin oxide through reduced graphene oxide as a highly efficient cathode material for magnesium-ion batteries. Asif M; Rashad M; Shah JH; Zaidi SDA J Colloid Interface Sci; 2020 Mar; 561():818-828. PubMed ID: 31771875 [TBL] [Abstract][Full Text] [Related]
35. Boric Acid Assisted Reduction of Graphene Oxide: A Promising Material for Sodium-Ion Batteries. Wang Y; Wang C; Wang Y; Liu H; Huang Z ACS Appl Mater Interfaces; 2016 Jul; 8(29):18860-6. PubMed ID: 27349132 [TBL] [Abstract][Full Text] [Related]
36. Understanding the Effect of Interplanar Space and Preintercalated Cations of Vanadate Cathode Materials on Potassium-Ion Battery Performance. Fan Y; Qu Z; Zhong W; Hu Z; Younus HA; Yang C; Wang X; Zhang S ACS Appl Mater Interfaces; 2021 Feb; 13(6):7377-7388. PubMed ID: 33550798 [TBL] [Abstract][Full Text] [Related]
37. CoMoO4 nanoparticles anchored on reduced graphene oxide nanocomposites as anodes for long-life lithium-ion batteries. Yao J; Gong Y; Yang S; Xiao P; Zhang Y; Keyshar K; Ye G; Ozden S; Vajtai R; Ajayan PM ACS Appl Mater Interfaces; 2014 Nov; 6(22):20414-22. PubMed ID: 25380030 [TBL] [Abstract][Full Text] [Related]
38. Boosting Lithium Storage Properties of MOF Derivatives through a Wet-Spinning Assembled Fiber Strategy. Zhang L; Liu W; Shi W; Xu X; Mao J; Li P; Ye C; Yin R; Ye S; Liu X; Cao X; Gao C Chemistry; 2018 Sep; 24(52):13792-13799. PubMed ID: 29992663 [TBL] [Abstract][Full Text] [Related]
39. Understanding the High-Performance Anode Material of CoC Zhang Y; Wang C; Dong Y; Wei R; Zhang J Chemistry; 2021 Jan; 27(3):993-1001. PubMed ID: 32776604 [TBL] [Abstract][Full Text] [Related]
40. Size-controllable synthesis of Zn Chen Y; Ji Z; Shen X; Chen H; Qi Y; Yuan A; Qiu J; Li B J Colloid Interface Sci; 2021 May; 589():13-24. PubMed ID: 33450456 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]