These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 34369922)

  • 1. Fabricating Multi-Component Lipid Nanotube Networks Using the Gliding Kinesin Motility Assay.
    Imam ZI; Bachand GD
    J Vis Exp; 2021 Jul; (173):. PubMed ID: 34369922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multicomponent and Multiphase Lipid Nanotubes Formed by Gliding Microtubule-Kinesin Motility and Phase-Separated Giant Unilamellar Vesicles.
    Imam ZI; Bachand GD
    Langmuir; 2019 Dec; 35(49):16281-16289. PubMed ID: 31730350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A continuous network of lipid nanotubes fabricated from the gliding motility of kinesin powered microtubule filaments.
    Bouxsein NF; Carroll-Portillo A; Bachand M; Sasaki DY; Bachand GD
    Langmuir; 2013 Mar; 29(9):2992-9. PubMed ID: 23391254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Actomyosin-Assisted Pulling of Lipid Nanotubes from Lipid Vesicles and Cells.
    Jahnke K; Maurer SJ; Weber C; Bücher JEH; Schoenit A; D'Este E; Cavalcanti-Adam EA; Göpfrich K
    Nano Lett; 2022 Feb; 22(3):1145-1150. PubMed ID: 35089720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic assembly of polymer nanotube networks via kinesin powered microtubule filaments.
    Paxton WF; Bouxsein NF; Henderson IM; Gomez A; Bachand GD
    Nanoscale; 2015 Jul; 7(25):10998-1004. PubMed ID: 25939271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple kinesins induce tension for smooth cargo transport.
    Tjioe M; Shukla S; Vaidya R; Troitskaia A; Bookwalter CS; Trybus KM; Chemla YR; Selvin PR
    Elife; 2019 Oct; 8():. PubMed ID: 31670658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A minimal system allowing tubulation with molecular motors pulling on giant liposomes.
    Roux A; Cappello G; Cartaud J; Prost J; Goud B; Bassereau P
    Proc Natl Acad Sci U S A; 2002 Apr; 99(8):5394-9. PubMed ID: 11959994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing the Number of Kinesin Motors Bound to Microtubules in the Gliding Motility Assay Using FLIC Microscopy.
    VanDelinder V; Bachand GD
    Methods Mol Biol; 2022; 2430():93-104. PubMed ID: 35476327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Freely drawn single lipid nanotube patterns.
    Sugihara K; Rustom A; Spatz JP
    Soft Matter; 2015 Mar; 11(10):2029-35. PubMed ID: 25626419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vesicle Size Regulates Nanotube Formation in the Cell.
    Su QP; Du W; Ji Q; Xue B; Jiang D; Zhu Y; Ren H; Zhang C; Lou J; Yu L; Sun Y
    Sci Rep; 2016 Apr; 6():24002. PubMed ID: 27052881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-range transport of giant vesicles along microtubule networks.
    Herold C; Leduc C; Stock R; Diez S; Schwille P
    Chemphyschem; 2012 Mar; 13(4):1001-6. PubMed ID: 22213552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring microtubule binding kinetics of membrane-bound kinesin motors using supported lipid bilayers.
    Jiang R; Hancock WO
    STAR Protoc; 2021 Sep; 2(3):100691. PubMed ID: 34382017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport efficiency of membrane-anchored kinesin-1 motors depends on motor density and diffusivity.
    Grover R; Fischer J; Schwarz FW; Walter WJ; Schwille P; Diez S
    Proc Natl Acad Sci U S A; 2016 Nov; 113(46):E7185-E7193. PubMed ID: 27803325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling the Rigidity of Kinesin-Propelled Microtubules in an
    Kabir AMR; Munmun T; Hayashi T; Yasuda S; Kimura AP; Kinoshita M; Murata T; Sada K; Kakugo A
    ACS Omega; 2022 Feb; 7(4):3796-3803. PubMed ID: 35128287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opposing Kinesin and Myosin-I Motors Drive Membrane Deformation and Tubulation along Engineered Cytoskeletal Networks.
    McIntosh BB; Pyrpassopoulos S; Holzbaur ELF; Ostap EM
    Curr Biol; 2018 Jan; 28(2):236-248.e5. PubMed ID: 29337076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of membrane nanotube formation by molecular motors.
    Leduc C; Campàs O; Joanny JF; Prost J; Bassereau P
    Biochim Biophys Acta; 2010 Jul; 1798(7):1418-26. PubMed ID: 19948146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring force generation within reconstituted microtubule bundle assemblies using optical tweezers.
    Al Azzam O; Trussell CL; Reinemann DN
    Cytoskeleton (Hoboken); 2021 Mar; 78(3):111-125. PubMed ID: 34051127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cooperative extraction of membrane nanotubes by molecular motors.
    Leduc C; Campàs O; Zeldovich KB; Roux A; Jolimaitre P; Bourel-Bonnet L; Goud B; Joanny JF; Bassereau P; Prost J
    Proc Natl Acad Sci U S A; 2004 Dec; 101(49):17096-101. PubMed ID: 15569933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single depolymerizing and transport kinesins stabilize microtubule ends.
    Ciorîță A; Bugiel M; Sudhakar S; Schäffer E; Jannasch A
    Cytoskeleton (Hoboken); 2021 May; 78(5):177-184. PubMed ID: 34310069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pulling Membrane Nanotubes from Giant Unilamellar Vesicles.
    Prévost C; Tsai FC; Bassereau P; Simunovic M
    J Vis Exp; 2017 Dec; (130):. PubMed ID: 29286431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.