These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 34370067)

  • 1. Analysis of higher order aberrations in recently developed wavefront-shaped IOLs.
    Schmid R; Borkenstein AF
    Graefes Arch Clin Exp Ophthalmol; 2022 Feb; 260(2):609-620. PubMed ID: 34370067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Depth of focus of four novel extended range of vision intraocular lenses.
    Schmid R; Fuchs C; Luedtke H; Borkenstein AF
    Eur J Ophthalmol; 2023 Jan; 33(1):257-261. PubMed ID: 36112834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Depth-of-focus Intraocular Lenses: Latest Wavefront-shaped Optics versus Diffractive Optics.
    Schmid R; Luedtke H; Borkenstein AF
    Optom Vis Sci; 2022 Apr; 99(4):335-341. PubMed ID: 35383733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [
    Du QX; Liu XM; Ma WH; Huang YS
    Zhonghua Yan Ke Za Zhi; 2024 Jun; 60(6):494-502. PubMed ID: 38679584
    [No Abstract]   [Full Text] [Related]  

  • 5. Objective evaluation of through-focus optical performance of presbyopia-correcting intraocular lenses using an optical bench system.
    Kim MJ; Zheleznyak L; Macrae S; Tchah H; Yoon G
    J Cataract Refract Surg; 2011 Jul; 37(7):1305-12. PubMed ID: 21700107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Depth of Focus Intraocular Lenses: Through Focus Evaluation of Wavefront-Shaping versus Diffractive Optics.
    Schmid R; Borkenstein AF
    Biomed Hub; 2023; 8(1):25-30. PubMed ID: 36938365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical Quality and Higher Order Aberrations of Refractive Extended Depth of Focus Intraocular Lenses.
    Baur ID; Yan W; Auffarth GU; Khoramnia R; Łabuz G
    J Refract Surg; 2023 Oct; 39(10):668-674. PubMed ID: 37824300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From corneal shape to ocular wavefront in eyes with aspheric IOLs: the feasibility of IOL customisation.
    de Jong T; Canovas C; Weeber H; Jansonius NM
    Ophthalmic Physiol Opt; 2016 Jan; 36(1):43-50. PubMed ID: 26489033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical quality comparison between spherical and aspheric toric intraocular lenses.
    Pérez-Vives C; Ferrer-Blasco T; García-Lázaro S; Albarrán-Diego C; Montés-Micó R
    Eur J Ophthalmol; 2014; 24(5):699-706. PubMed ID: 24519505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical Bench Analysis of 2 Depth of Focus Intraocular Lenses.
    Borkenstein AF; Borkenstein EM; Luedtke H; Schmid R
    Biomed Hub; 2021; 6(3):77-85. PubMed ID: 34950668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Static and Dynamic Factors Associated With Extended Depth of Focus in Monofocal Intraocular Lenses.
    Rocha KM; Gouvea L; Waring GO; Haddad J
    Am J Ophthalmol; 2020 Aug; 216():271-282. PubMed ID: 32335058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of corneal aberrations on through-focus image quality of presbyopia-correcting intraocular lenses using an adaptive optics bench system.
    Zheleznyak L; Kim MJ; MacRae S; Yoon G
    J Cataract Refract Surg; 2012 Oct; 38(10):1724-33. PubMed ID: 22902188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical performance of intraocular lenses correcting both spherical and chromatic aberration.
    Weeber HA; Piers PA
    J Refract Surg; 2012 Jan; 28(1):48-52. PubMed ID: 22074466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Novel Optical Design and Clinical Classification of a Wavefront-Shaping Presbyopia-Correcting Intraocular Lens.
    Kohnen T; Berdahl JP; Hong X; Bala C
    Clin Ophthalmol; 2023; 17():2449-2457. PubMed ID: 37614847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of a novel hydrophobic acrylic enhanced monofocal intraocular lens compared to its standard monofocal type on the optical bench.
    Borkenstein AF; Borkenstein EM; Schmid R
    BMC Ophthalmol; 2022 Sep; 22(1):356. PubMed ID: 36057556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fellow-eye comparison of 2 aspheric microincision intraocular lenses and effect of asphericity on visual performance.
    Nanavaty MA; Spalton DJ; Gala KB
    J Cataract Refract Surg; 2012 Apr; 38(4):625-32. PubMed ID: 22342007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of intraocular lens asphericity on vertical coma aberration.
    Nanavaty MA; Spalton DJ; Marshall J
    J Cataract Refract Surg; 2010 Feb; 36(2):215-21. PubMed ID: 20152600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Custom optimization of intraocular lens asphericity.
    Wang L; Koch DD
    J Cataract Refract Surg; 2007 Oct; 33(10):1713-20. PubMed ID: 17889765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro optical performance of a new aberration-free intraocular lens.
    Madrid-Costa D; Ruiz-Alcocer J; Ferrer-Blasco T; García-Lázaro S; Montés-Micó R
    Eye (Lond); 2014 May; 28(5):614-20. PubMed ID: 24556881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational simulation of the optical performance of an EDOF intraocular lens in post-LASIK eyes.
    Lago CM; de Castro A; Marcos S
    J Cataract Refract Surg; 2023 Nov; 49(11):1153-1159. PubMed ID: 37458453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.