These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 34370220)

  • 1. Prediction of Potential MicroRNA-Disease Association Using Kernelized Bayesian Matrix Factorization.
    Toprak A; Eryilmaz Dogan E
    Interdiscip Sci; 2021 Dec; 13(4):595-602. PubMed ID: 34370220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting MicroRNA-Disease Associations Based on Improved MicroRNA and Disease Similarities.
    Lan W; Wang J; Li M; Liu J; Wu FX; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(6):1774-1782. PubMed ID: 27392365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of Potential Associations Between MicroRNA and Disease Based on Bayesian Probabilistic Matrix Factorization Model.
    Mao G; Wang SL; Zhang W
    J Comput Biol; 2019 Sep; 26(9):1030-1039. PubMed ID: 31246500
    [No Abstract]   [Full Text] [Related]  

  • 4. Potential miRNA-disease association prediction based on kernelized Bayesian matrix factorization.
    Chen X; Li SX; Yin J; Wang CC
    Genomics; 2020 Jan; 112(1):809-819. PubMed ID: 31136792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of miRNA-disease associations based on Weighted [Formula: see text]-Nearest known neighbors and network consistency projection.
    Toprak A; Eryilmaz E
    J Bioinform Comput Biol; 2021 Feb; 19(1):2050041. PubMed ID: 33148093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of miRNA-disease associations via multiple information integration with Bayesian ranking.
    Zhu CC; Wang CC; Zhao Y; Zuo M; Chen X
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34347021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hessian Regularized [Formula: see text]-Nonnegative Matrix Factorization and Deep Learning for miRNA-Disease Associations Prediction.
    Han GS; Gao Q; Peng LZ; Tang J
    Interdiscip Sci; 2024 Mar; 16(1):176-191. PubMed ID: 38099958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNRLMF-MDA:Predicting microRNA-Disease Associations Based on Similarities of microRNAs and Diseases.
    Yan C; Wang J; Ni P; Lan W; Wu FX; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(1):233-243. PubMed ID: 29990253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MCCMF: collaborative matrix factorization based on matrix completion for predicting miRNA-disease associations.
    Wu TR; Yin MM; Jiao CN; Gao YL; Kong XZ; Liu JX
    BMC Bioinformatics; 2020 Oct; 21(1):454. PubMed ID: 33054708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MDSCMF: Matrix Decomposition and Similarity-Constrained Matrix Factorization for miRNA-Disease Association Prediction.
    Ni J; Li L; Wang Y; Ji C; Zheng C
    Genes (Basel); 2022 Jun; 13(6):. PubMed ID: 35741782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of Disease-related microRNAs through Integrating Attributes of microRNA Nodes and Multiple Kinds of Connecting Edges.
    Xuan P; Li L; Zhang T; Zhang Y; Song Y
    Molecules; 2019 Aug; 24(17):. PubMed ID: 31455026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EGBMMDA: Extreme Gradient Boosting Machine for MiRNA-Disease Association prediction.
    Chen X; Huang L; Xie D; Zhao Q
    Cell Death Dis; 2018 Jan; 9(1):3. PubMed ID: 29305594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SCMFMDA: Predicting microRNA-disease associations based on similarity constrained matrix factorization.
    Li L; Gao Z; Wang YT; Zhang MW; Ni JC; Zheng CH; Su Y
    PLoS Comput Biol; 2021 Jul; 17(7):e1009165. PubMed ID: 34252084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An integrated framework for the identification of potential miRNA-disease association based on novel negative samples extraction strategy.
    Wang CC; Chen X; Yin J; Qu J
    RNA Biol; 2019 Mar; 16(3):257-269. PubMed ID: 30646823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SNMFSMMA: using symmetric nonnegative matrix factorization and Kronecker regularized least squares to predict potential small molecule-microRNA association.
    Zhao Y; Chen X; Yin J; Qu J
    RNA Biol; 2020 Feb; 17(2):281-291. PubMed ID: 31739716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of miRNA-disease associations by neural network-based deep matrix factorization.
    Qu Q; Chen X; Ning B; Zhang X; Nie H; Zeng L; Chen H; Fu X
    Methods; 2023 Apr; 212():1-9. PubMed ID: 36813017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient framework for predicting MiRNA-disease associations based on improved hybrid collaborative filtering.
    Nie R; Li Z; You ZH; Bao W; Li J
    BMC Med Inform Decis Mak; 2021 Aug; 21(Suppl 1):254. PubMed ID: 34461870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LWPCMF: Logistic Weighted Profile-Based Collaborative Matrix Factorization for Predicting MiRNA-Disease Associations.
    Yin MM; Cui Z; Gao MM; Liu JX; Gao YL
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(3):1122-1129. PubMed ID: 31478868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IMIPMF: Inferring miRNA-disease interactions using probabilistic matrix factorization.
    Ha J; Park C; Park C; Park S
    J Biomed Inform; 2020 Feb; 102():103358. PubMed ID: 31857202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-Network Collaborative Matrix Factorization for predicting small molecule-miRNA associations.
    Wang SH; Wang CC; Huang L; Miao LY; Chen X
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34864865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.