These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 3437035)
21. Analyis of met-form haemoglobins in human erythrocytes of normal adults and of a patient with hereditary methaemoglobinaemia due to deficiency of NADH-cytochrome b5 reductase. Tomoda A; Imoto M; Hirano M; Yoneyama Y Biochem J; 1979 Aug; 181(2):505-7. PubMed ID: 496898 [TBL] [Abstract][Full Text] [Related]
22. Fructose 2,6-bisphosphate and glucose 1,6-bisphosphate levels in erythrocytes with high and low 2,3-bisphosphoglycerate content during postnatal development. Gallego C; Carreras J FEBS Lett; 1989 Jul; 251(1-2):74-8. PubMed ID: 2753166 [TBL] [Abstract][Full Text] [Related]
23. Human erythrocyte phosphoglucomutase: comparison of the kinetic properties of PGM1 and PGM2 isoenzymes. Ninfali P; Accorsi A; Palma F; Fazi A; Piatti E; Chiarantini L; Fornaini G Biochimie; 1984; 66(9-10):617-23. PubMed ID: 6240990 [TBL] [Abstract][Full Text] [Related]
24. Cytochrome b5 and NADH-cytochrome-b5 reductase from sipunculan erythrocytes; a methemerythrin reduction system from Phascolopsis gouldii. Utecht RE; Kurtz DM Biochim Biophys Acta; 1988 Mar; 953(2):164-78. PubMed ID: 2831990 [TBL] [Abstract][Full Text] [Related]
25. Direct enzyme titration curve of NADH: cytochrome b5 reductase by combined isoelectric focusing/electrophoresis. Interactions between enzyme and cytochrome b5. Lostanlen D; Gacon G; Kaplan JC Eur J Biochem; 1980 Nov; 112(1):179-83. PubMed ID: 7449761 [TBL] [Abstract][Full Text] [Related]
26. Effect of repetitive bleeding on NADH-cytochrome b5 methemoglobin reductase activity and molybdenum content in erythrocytes in rats. Yang Y; Wang F; Li GS; Kang DR Biomed Environ Sci; 1996 Dec; 9(4):393-8. PubMed ID: 8988808 [TBL] [Abstract][Full Text] [Related]
27. [Cytochrome b5 reductase]. Takeshita M; Shirabe K Nihon Rinsho; 1995 Mar; 53 Su Pt 2():225-8. PubMed ID: 8753223 [No Abstract] [Full Text] [Related]
28. Action of acetaldehyde on glucose metabolism of newborn and adult erythrocytes. Ninfali P; Palma F; Piacentini MP; Fornaini G Biol Neonate; 1987; 52(5):256-63. PubMed ID: 3676366 [TBL] [Abstract][Full Text] [Related]
29. Fructose 2,6-bisphosphate and glucose 1,6-bisphosphate in avian and mammalian erythroid cells. Carreras J; Bartrons R; Espinet C; Gallego C Biomed Biochim Acta; 1987; 46(2-3):S258-62. PubMed ID: 2954546 [TBL] [Abstract][Full Text] [Related]
30. Purification and properties of soluble NADH-cytochrome b5 reductase of rabbit erythrocytes. Yubisui T; Takeshita M J Biochem; 1982 May; 91(5):1467-77. PubMed ID: 7096301 [TBL] [Abstract][Full Text] [Related]
31. [Dependence of human erythrocyte methemoglobin reductase on temperature]. Kozlova NM; Chernitskiĭ EA Biokhimiia; 1991 Feb; 56(2):342-5. PubMed ID: 1873346 [TBL] [Abstract][Full Text] [Related]
38. Acceleration of methaemoglobin reduction by riboflavin in human erythrocytes. Matsuki T; Yubisui T; Tomoda A; Yoneyama Y; Takeshita M; Hirano M; Kobayashi K; Tani Y Br J Haematol; 1978 Aug; 39(4):523-8. PubMed ID: 698125 [TBL] [Abstract][Full Text] [Related]
39. The special behavior of equine erythrocytes connected with the methemoglobin regulation. Medeiros LO; Nürmberger R; Medeiros LF Comp Biochem Physiol B; 1984; 78(4):869-71. PubMed ID: 6467915 [TBL] [Abstract][Full Text] [Related]
40. The reduction of methemoglobin in Neo Red Cell. Ohki N; Kimura T; Ogata Y Artif Cells Blood Substit Immobil Biotechnol; 1998 Nov; 26(5-6):477-85. PubMed ID: 9844714 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]