These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34370434)

  • 1.
    Naughton KJ; Treviño RE; Moore PJ; Wertz AE; Dickson JA; Shafaat HS
    ACS Synth Biol; 2021 Aug; 10(8):2116-2120. PubMed ID: 34370434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nickel-Substituted Rubredoxin as a Minimal Enzyme Model for Hydrogenase.
    Slater JW; Shafaat HS
    J Phys Chem Lett; 2015 Sep; 6(18):3731-6. PubMed ID: 26722748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rubredoxin Protein Scaffolds Sourced from Diverse Environmental Niches as an Artificial Hydrogenase Platform.
    Wertz AE; Teptarakulkarn P; Stein RE; Moore PJ; Shafaat HS
    Biochemistry; 2023 Sep; 62(17):2622-2631. PubMed ID: 37579005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Going beyond Structure: Nickel-Substituted Rubredoxin as a Mechanistic Model for the [NiFe] Hydrogenases.
    Slater JW; Marguet SC; Monaco HA; Shafaat HS
    J Am Chem Soc; 2018 Aug; 140(32):10250-10262. PubMed ID: 30016865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering a non-native hydrogen production pathway into Escherichia coli via a cyanobacterial [NiFe] hydrogenase.
    Wells MA; Mercer J; Mott RA; Pereira-Medrano AG; Burja AM; Radianingtyas H; Wright PC
    Metab Eng; 2011 Jul; 13(4):445-53. PubMed ID: 21276867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of biohydrogen by recombinant expression of [NiFe]-hydrogenase 1 in Escherichia coli.
    Kim JY; Jo BH; Cha HJ
    Microb Cell Fact; 2010 Jul; 9():54. PubMed ID: 20604966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteolytic cleavage orchestrates cofactor insertion and protein assembly in [NiFe]-hydrogenase biosynthesis.
    Senger M; Stripp ST; Soboh B
    J Biol Chem; 2017 Jul; 292(28):11670-11681. PubMed ID: 28539366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and characterisation of synthetic operons for biohydrogen technology.
    Lamont CM; Sargent F
    Arch Microbiol; 2017 Apr; 199(3):495-503. PubMed ID: 27872947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A whole-cell, high-throughput hydrogenase assay to identify factors that modulate [NiFe]-hydrogenase activity.
    Lacasse MJ; Sebastiampillai S; Côté JP; Hodkinson N; Brown ED; Zamble DB
    J Biol Chem; 2019 Oct; 294(42):15373-15385. PubMed ID: 31455635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of gene-shuffling for the rapid generation of novel [FeFe]-hydrogenase libraries.
    Nagy LE; Meuser JE; Plummer S; Seibert M; Ghirardi ML; King PW; Ahmann D; Posewitz MC
    Biotechnol Lett; 2007 Mar; 29(3):421-30. PubMed ID: 17195059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current state and perspectives in hydrogen production by Escherichia coli: roles of hydrogenases in glucose or glycerol metabolism.
    Maeda T; Tran KT; Yamasaki R; Wood TK
    Appl Microbiol Biotechnol; 2018 Mar; 102(5):2041-2050. PubMed ID: 29368215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage.
    Thauer RK; Kaster AK; Goenrich M; Schick M; Hiromoto T; Shima S
    Annu Rev Biochem; 2010; 79():507-36. PubMed ID: 20235826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Promising approaches for the assembly of the catalytically active, recombinant Desulfomicrobium baculatum hydrogenase with substitutions at the active site.
    Witkowska M; Jedrzejczak RP; Joachimiak A; Cavdar O; Malankowska A; Skowron PM; Zylicz-Stachula A
    Microb Cell Fact; 2023 Jul; 22(1):134. PubMed ID: 37479997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of biohydrogen by heterologous expression of oxygen-tolerant Hydrogenovibrio marinus [NiFe]-hydrogenase in Escherichia coli.
    Kim JY; Jo BH; Cha HJ
    J Biotechnol; 2011 Sep; 155(3):312-9. PubMed ID: 21794837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A membrane-bound [NiFe]-hydrogenase large subunit precursor whose C-terminal extension is not essential for cofactor incorporation but guarantees optimal maturation.
    Hartmann S; Frielingsdorf S; Caserta G; Lenz O
    Microbiologyopen; 2020 Jun; 9(6):1197-1206. PubMed ID: 32180370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directed evolution of artificial metalloenzymes for in vivo metathesis.
    Jeschek M; Reuter R; Heinisch T; Trindler C; Klehr J; Panke S; Ward TR
    Nature; 2016 Sep; 537(7622):661-665. PubMed ID: 27571282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic engineering of a new biocatalyst encapsulating [NiFe]-hydrogenases for enhanced hydrogen production.
    Jiang Q; Li T; Yang J; Aitchison CM; Huang J; Chen Y; Huang F; Wang Q; Cooper AI; Liu LN
    J Mater Chem B; 2023 Mar; 11(12):2684-2692. PubMed ID: 36883480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen production by recombinant Escherichia coli strains.
    Maeda T; Sanchez-Torres V; Wood TK
    Microb Biotechnol; 2012 Mar; 5(2):214-25. PubMed ID: 21895995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterologous expression and maturation of an NADP-dependent [NiFe]-hydrogenase: a key enzyme in biofuel production.
    Sun J; Hopkins RC; Jenney FE; McTernan PM; Adams MW
    PLoS One; 2010 May; 5(5):e10526. PubMed ID: 20463892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of hydrogen uptake in Escherichia coli by expressing the hydrogenase from the cyanobacterium Synechocystis sp. PCC 6803.
    Maeda T; Vardar G; Self WT; Wood TK
    BMC Biotechnol; 2007 May; 7():25. PubMed ID: 17521447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.