BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 34370452)

  • 1. Development of a
    Sun X; Li S; Zhang F; Sun T; Chen L; Zhang W
    ACS Synth Biol; 2021 Aug; 10(8):1920-1930. PubMed ID: 34370452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and optimization of genetic toolboxes for a fast-growing cyanobacterium Synechococcus elongatus UTEX 2973.
    Li S; Sun T; Xu C; Chen L; Zhang W
    Metab Eng; 2018 Jul; 48():163-174. PubMed ID: 29883802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering a Controllable Targeted Protein Degradation System and a Derived OR-GATE-Type Inducible Gene Expression System in
    Zhang M; Luo Q; Sun H; Fritze J; Luan G; Lu X
    ACS Synth Biol; 2022 Jan; 11(1):125-134. PubMed ID: 34914362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering for isopropanol production by an engineered cyanobacterium, Synechococcus elongatus PCC 7942, under photosynthetic conditions.
    Hirokawa Y; Dempo Y; Fukusaki E; Hanai T
    J Biosci Bioeng; 2017 Jan; 123(1):39-45. PubMed ID: 27613406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a New Biocontainment Strategy in Model Cyanobacterium
    Zhou Y; Sun T; Chen Z; Song X; Chen L; Zhang W
    ACS Synth Biol; 2019 Nov; 8(11):2576-2584. PubMed ID: 31577416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward solar biodiesel production from CO2 using engineered cyanobacteria.
    Woo HM; Lee HJ
    FEMS Microbiol Lett; 2017 May; 364(9):. PubMed ID: 28407086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of new synthetic biology tools for the control of gene expression in the cyanobacterium Synechococcus sp. strain PCC 7002.
    Zess EK; Begemann MB; Pfleger BF
    Biotechnol Bioeng; 2016 Feb; 113(2):424-32. PubMed ID: 26192329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcription of Sialic Acid Catabolism Genes in Corynebacterium glutamicum Is Subject to Catabolite Repression and Control by the Transcriptional Repressor NanR.
    Uhde A; Brühl N; Goldbeck O; Matano C; Gurow O; Rückert C; Marin K; Wendisch VF; Krämer R; Seibold GM
    J Bacteriol; 2016 Aug; 198(16):2204-18. PubMed ID: 27274030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Library of Tunable, Portable, and Inducer-Free Promoters Derived from Cyanobacteria.
    Sengupta A; Madhu S; Wangikar PP
    ACS Synth Biol; 2020 Jul; 9(7):1790-1801. PubMed ID: 32551554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zn2+-Inducible Expression Platform for Synechococcus sp. Strain PCC 7002 Based on the smtA Promoter/Operator and smtB Repressor.
    Pérez AA; Gajewski JP; Ferlez BH; Ludwig M; Baker CS; Golbeck JH; Bryant DA
    Appl Environ Microbiol; 2017 Feb; 83(3):. PubMed ID: 27836841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic biology toolbox for controlling gene expression in the cyanobacterium Synechococcus sp. strain PCC 7002.
    Markley AL; Begemann MB; Clarke RE; Gordon GC; Pfleger BF
    ACS Synth Biol; 2015 May; 4(5):595-603. PubMed ID: 25216157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of CRISPR-Cas9 knock-in tools for free fatty acid production using the fast-growing cyanobacterial strain Synechococcus elongatus UTEX 2973.
    Racharaks R; Arnold W; Peccia J
    J Microbiol Methods; 2021 Oct; 189():106315. PubMed ID: 34454980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Novel Cyanobacterium Synechococcus elongatus PCC 11802 has Distinct Genomic and Metabolomic Characteristics Compared to its Neighbor PCC 11801.
    Jaiswal D; Sengupta A; Sengupta S; Madhu S; Pakrasi HB; Wangikar PP
    Sci Rep; 2020 Jan; 10(1):191. PubMed ID: 31932622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theophylline-dependent riboswitch as a novel genetic tool for strict regulation of protein expression in Cyanobacterium Synechococcus elongatus PCC 7942.
    Nakahira Y; Ogawa A; Asano H; Oyama T; Tozawa Y
    Plant Cell Physiol; 2013 Oct; 54(10):1724-35. PubMed ID: 23969558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering Natural Competence into the Fast-Growing Cyanobacterium
    Wendt KE; Walker P; Sengupta A; Ungerer J; Pakrasi HB
    Appl Environ Microbiol; 2022 Jan; 88(1):e0188221. PubMed ID: 34705549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast-growing cyanobacterial chassis for synthetic biology application.
    Li Z; Li S; Chen L; Sun T; Zhang W
    Crit Rev Biotechnol; 2024 May; 44(3):414-428. PubMed ID: 36842999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NOT Gate Genetic Circuits to Control Gene Expression in Cyanobacteria.
    Taton A; Ma AT; Ota M; Golden SS; Golden JW
    ACS Synth Biol; 2017 Dec; 6(12):2175-2182. PubMed ID: 28803467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The potential of Synechococcus elongatus UTEX 2973 for sugar feedstock production.
    Song K; Tan X; Liang Y; Lu X
    Appl Microbiol Biotechnol; 2016 Sep; 100(18):7865-75. PubMed ID: 27079574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering and characterization of copper and gold sensors in Escherichia coli and Synechococcus sp. PCC 7002.
    Lacey RF; Ye D; Ruffing AM
    Appl Microbiol Biotechnol; 2019 Mar; 103(6):2797-2808. PubMed ID: 30645690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced stable production of ethylene in photosynthetic cyanobacterium Synechococcus elongatus PCC 7942.
    Carbonell V; Vuorio E; Aro EM; Kallio P
    World J Microbiol Biotechnol; 2019 May; 35(5):77. PubMed ID: 31069553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.