BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 34370478)

  • 1. Tunable Band Gaps in MUV-10(M): A Family of Photoredox-Active MOFs with Earth-Abundant Open Metal Sites.
    Fabrizio K; Lazarou KA; Payne LI; Twight LP; Golledge S; Hendon CH; Brozek CK
    J Am Chem Soc; 2021 Aug; 143(32):12609-12621. PubMed ID: 34370478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge Transport in Zirconium-Based Metal-Organic Frameworks.
    Kung CW; Goswami S; Hod I; Wang TC; Duan J; Farha OK; Hupp JT
    Acc Chem Res; 2020 Jun; 53(6):1187-1195. PubMed ID: 32401008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Ti
    Yuan S; Qin JS; Xu HQ; Su J; Rossi D; Chen Y; Zhang L; Lollar C; Wang Q; Jiang HL; Son DH; Xu H; Huang Z; Zou X; Zhou HC
    ACS Cent Sci; 2018 Jan; 4(1):105-111. PubMed ID: 29392182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stepwise Synthesis of Metal-Organic Frameworks.
    Bosch M; Yuan S; Rutledge W; Zhou HC
    Acc Chem Res; 2017 Apr; 50(4):857-865. PubMed ID: 28350434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multifunctional metal-organic framework catalysts: synergistic catalysis and tandem reactions.
    Huang YB; Liang J; Wang XS; Cao R
    Chem Soc Rev; 2017 Jan; 46(1):126-157. PubMed ID: 27841411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gram-scale synthesis of MIL-125 nanoparticles and their solution processability.
    Fabrizio K; Gormley EL; Davenport AM; Hendon CH; Brozek CK
    Chem Sci; 2023 Aug; 14(33):8946-8955. PubMed ID: 37621428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site Isolation in Metal-Organic Frameworks Enables Novel Transition Metal Catalysis.
    Drake T; Ji P; Lin W
    Acc Chem Res; 2018 Sep; 51(9):2129-2138. PubMed ID: 30129753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclodextrin Metal-Organic Frameworks and Their Applications.
    Roy I; Stoddart JF
    Acc Chem Res; 2021 Mar; 54(6):1440-1453. PubMed ID: 33523626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ti(3+)-, V(2+/3+)-, Cr(2+/3+)-, Mn(2+)-, and Fe(2+)-substituted MOF-5 and redox reactivity in Cr- and Fe-MOF-5.
    Brozek CK; Dincă M
    J Am Chem Soc; 2013 Aug; 135(34):12886-91. PubMed ID: 23902330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Flexible Photoactive Titanium Metal-Organic Framework Based on a [Ti(IV)3(μ3-O)(O)2(COO)6] Cluster.
    Bueken B; Vermoortele F; Vanpoucke DE; Reinsch H; Tsou CC; Valvekens P; De Baerdemaeker T; Ameloot R; Kirschhock CE; Van Speybroeck V; Mayer JM; De Vos D
    Angew Chem Int Ed Engl; 2015 Nov; 54(47):13912-7. PubMed ID: 26404186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-Activity Relationship Insights for Organophosphonate Hydrolysis at Ti(IV) Active Sites in Metal-Organic Frameworks.
    Mian MR; Wang X; Wang X; Kirlikovali KO; Xie H; Ma K; Fahy KM; Chen H; Islamoglu T; Snurr RQ; Farha OK
    J Am Chem Soc; 2023 Apr; 145(13):7435-7445. PubMed ID: 36919617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Titanium coordination compounds: from discrete metal complexes to metal-organic frameworks.
    Assi H; Mouchaham G; Steunou N; Devic T; Serre C
    Chem Soc Rev; 2017 Jun; 46(11):3431-3452. PubMed ID: 28537319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrophobic MOFs@Metal Nanoparticles@COFs for Interfacially Confined Photocatalysis with High Efficiency.
    Sun D; Kim DP
    ACS Appl Mater Interfaces; 2020 May; 12(18):20589-20595. PubMed ID: 32307981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal-Organic Frameworks for Photocatalysis and Photothermal Catalysis.
    Xiao JD; Jiang HL
    Acc Chem Res; 2019 Feb; 52(2):356-366. PubMed ID: 30571078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-organic frameworks with functional pores for recognition of small molecules.
    Chen B; Xiang S; Qian G
    Acc Chem Res; 2010 Aug; 43(8):1115-24. PubMed ID: 20450174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substituted Ti(IV) in Ce-UiO-66-NH
    Hou W; Chen C; Xie D; Xu Y
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):2911-2921. PubMed ID: 36609181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient electro-catalyzed PMS activation on a Fe-ZIF-8 based BTNAs/Ti anode: An in-depth investigation on anodic catalytic behavior.
    Mo F; Zhou Q; Hou Z; Wang S; Wang Q; Kang W
    Environ Int; 2022 Nov; 169():107548. PubMed ID: 36179645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rare-Earth-Modified Metal-Organic Frameworks and Derivatives for Photo/Electrocatalysis.
    Fan C; Dong W; Saira Y; Tang Y; Fu G; Lee JM
    Small; 2023 Oct; 19(41):e2302738. PubMed ID: 37291982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rare-earth metal-organic frameworks: from structure to applications.
    Saraci F; Quezada-Novoa V; Donnarumma PR; Howarth AJ
    Chem Soc Rev; 2020 Nov; 49(22):7949-7977. PubMed ID: 32658241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inner transition metal-modulated metal organic frameworks (IT-MOFs) and their derived nanomaterials: a strategic approach towards stupendous photocatalysis.
    Panda J; Tripathy SP; Dash S; Ray A; Behera P; Subudhi S; Parida K
    Nanoscale; 2023 May; 15(17):7640-7675. PubMed ID: 37066602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.