These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 34370727)

  • 1. Dendritic normalisation improves learning in sparsely connected artificial neural networks.
    Bird AD; Jedlicka P; Cuntz H
    PLoS Comput Biol; 2021 Aug; 17(8):e1009202. PubMed ID: 34370727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drawing inspiration from biological dendrites to empower artificial neural networks.
    Chavlis S; Poirazi P
    Curr Opin Neurobiol; 2021 Oct; 70():1-10. PubMed ID: 34087540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sparse synaptic connectivity is required for decorrelation and pattern separation in feedforward networks.
    Cayco-Gajic NA; Clopath C; Silver RA
    Nat Commun; 2017 Oct; 8(1):1116. PubMed ID: 29061964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dendritic Mechanisms for
    Fischer L; Mojica Soto-Albors R; Tang VD; Bicknell B; Grienberger C; Francioni V; Naud R; Palmer LM; Takahashi N
    J Neurosci; 2022 Nov; 42(45):8460-8467. PubMed ID: 36351832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mirrored STDP Implements Autoencoder Learning in a Network of Spiking Neurons.
    Burbank KS
    PLoS Comput Biol; 2015 Dec; 11(12):e1004566. PubMed ID: 26633645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perturbing low dimensional activity manifolds in spiking neuronal networks.
    Wärnberg E; Kumar A
    PLoS Comput Biol; 2019 May; 15(5):e1007074. PubMed ID: 31150376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Do Biological Constraints Impair Dendritic Computation?
    Jones IS; Kording KP
    Neuroscience; 2022 May; 489():262-274. PubMed ID: 34364955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks V: self-organization schemes and weight dependence.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2010 Nov; 103(5):365-86. PubMed ID: 20882297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning probabilistic neural representations with randomly connected circuits.
    Maoz O; Tkačik G; Esteki MS; Kiani R; Schneidman E
    Proc Natl Acad Sci U S A; 2020 Oct; 117(40):25066-25073. PubMed ID: 32948691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A solution to the learning dilemma for recurrent networks of spiking neurons.
    Bellec G; Scherr F; Subramoney A; Hajek E; Salaj D; Legenstein R; Maass W
    Nat Commun; 2020 Jul; 11(1):3625. PubMed ID: 32681001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the sample complexity of learning for networks of spiking neurons with nonlinear synaptic interactions.
    Schmitt M
    IEEE Trans Neural Netw; 2004 Sep; 15(5):995-1001. PubMed ID: 15484876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Green's function formalism as a bridge between single- and multi-compartmental modeling.
    Wybo WA; Stiefel KM; Torben-Nielsen B
    Biol Cybern; 2013 Dec; 107(6):685-94. PubMed ID: 24037222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dendritic Computing: Branching Deeper into Machine Learning.
    Acharya J; Basu A; Legenstein R; Limbacher T; Poirazi P; Wu X
    Neuroscience; 2022 May; 489():275-289. PubMed ID: 34656706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constructing Precisely Computing Networks with Biophysical Spiking Neurons.
    Schwemmer MA; Fairhall AL; Denéve S; Shea-Brown ET
    J Neurosci; 2015 Jul; 35(28):10112-34. PubMed ID: 26180189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Embedding multiple trajectories in simulated recurrent neural networks in a self-organizing manner.
    Liu JK; Buonomano DV
    J Neurosci; 2009 Oct; 29(42):13172-81. PubMed ID: 19846705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural Classifiers with Limited Connectivity and Recurrent Readouts.
    Kushnir L; Fusi S
    J Neurosci; 2018 Nov; 38(46):9900-9924. PubMed ID: 30249794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single cortical neurons as deep artificial neural networks.
    Beniaguev D; Segev I; London M
    Neuron; 2021 Sep; 109(17):2727-2739.e3. PubMed ID: 34380016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inverse stochastic resonance in networks of spiking neurons.
    Uzuntarla M; Barreto E; Torres JJ
    PLoS Comput Biol; 2017 Jul; 13(7):e1005646. PubMed ID: 28692643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of cellular homeostatic intrinsic plasticity on dynamical and computational properties of biological recurrent neural networks.
    Naudé J; Cessac B; Berry H; Delord B
    J Neurosci; 2013 Sep; 33(38):15032-43. PubMed ID: 24048833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling plasticity in dendrites: from single cells to networks.
    Bono J; Wilmes KA; Clopath C
    Curr Opin Neurobiol; 2017 Oct; 46():136-141. PubMed ID: 28888857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.