BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 34371008)

  • 21. Role of altered insulin signaling pathways in the pathogenesis of podocyte malfunction and microalbuminuria.
    Jauregui A; Mintz DH; Mundel P; Fornoni A
    Curr Opin Nephrol Hypertens; 2009 Nov; 18(6):539-45. PubMed ID: 19724224
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Repression of miR-217 protects against high glucose-induced podocyte injury and insulin resistance by restoring PTEN-mediated autophagy pathway.
    Sun J; Li ZP; Zhang RQ; Zhang HM
    Biochem Biophys Res Commun; 2017 Jan; 483(1):318-324. PubMed ID: 28017719
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy.
    Susztak K; Raff AC; Schiffer M; Böttinger EP
    Diabetes; 2006 Jan; 55(1):225-33. PubMed ID: 16380497
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein phosphatases and podocyte function.
    Geraldes P
    Curr Opin Nephrol Hypertens; 2018 Jan; 27(1):49-55. PubMed ID: 29068796
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proteinuria, the podocyte, and insulin resistance.
    Fornoni A
    N Engl J Med; 2010 Nov; 363(21):2068-9. PubMed ID: 21083394
    [No Abstract]   [Full Text] [Related]  

  • 26. Glycyrrhizic Acid Protects Glomerular Podocytes Induced by High Glucose by Modulating SNARK/AMPK Signaling Pathway.
    Zhao TQ; Li Y; Zhang M; Zhao MC; Cao X; Hou SZ
    Curr Med Sci; 2023 Aug; 43(4):696-707. PubMed ID: 37450070
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Autophagy protects human podocytes from high glucose-induced injury by preventing insulin resistance.
    Xin W; Li Z; Xu Y; Yu Y; Zhou Q; Chen L; Wan Q
    Metabolism; 2016 Sep; 65(9):1307-15. PubMed ID: 27506738
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Saturated fatty acids induce insulin resistance in podocytes through inhibition of IRS1 via activation of both IKKβ and mTORC1.
    Denhez B; Rousseau M; Spino C; Dancosst DA; Dumas MÈ; Guay A; Lizotte F; Geraldes P
    Sci Rep; 2020 Dec; 10(1):21628. PubMed ID: 33303821
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cdk5-Mediated Phosphorylation of Sirt1 Contributes to Podocyte Mitochondrial Dysfunction in Diabetic Nephropathy.
    Wang S; Yang Y; He X; Yang L; Wang J; Xia S; Liu D; Liu S; Yang L; Liu W; Duan H
    Antioxid Redox Signal; 2021 Jan; 34(3):171-190. PubMed ID: 32660255
    [No Abstract]   [Full Text] [Related]  

  • 30. Dopamine 1 receptor activation protects mouse diabetic podocytes injury via regulating the PKA/NOX-5/p38 MAPK axis.
    Shao X; Zhang X; Hu J; Gao T; Chen J; Xu C; Wei C
    Exp Cell Res; 2020 Mar; 388(2):111849. PubMed ID: 31954110
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tadalafil Integrates Nitric Oxide-Hydrogen Sulfide Signaling to Inhibit High Glucose-induced Matrix Protein Synthesis in Podocytes.
    Lee HJ; Feliers D; Mariappan MM; Sataranatarajan K; Choudhury GG; Gorin Y; Kasinath BS
    J Biol Chem; 2015 May; 290(19):12014-26. PubMed ID: 25752605
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Atractylodes lancea and Magnolia officinalis combination protects against high fructose-impaired insulin signaling in glomerular podocytes through upregulating Sirt1 to inhibit p53-driven miR-221.
    Yang J; Wang ZX; Fang L; Li TS; Liu ZH; Pan Y; Kong LD
    J Ethnopharmacol; 2023 Jan; 300():115688. PubMed ID: 36067838
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Knockout of TRPC6 promotes insulin resistance and exacerbates glomerular injury in Akita mice.
    Wang L; Chang JH; Buckley AF; Spurney RF
    Kidney Int; 2019 Feb; 95(2):321-332. PubMed ID: 30665571
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High glucose increases Cdk5 activity in podocytes via transforming growth factor-β1 signaling pathway.
    Zhang Y; Li H; Hao J; Zhou Y; Liu W
    Exp Cell Res; 2014 Aug; 326(2):219-29. PubMed ID: 24768698
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CTRP4 attenuates apoptosis and epithelial-mesenchymal transition markers in podocytes through an AMPK/autophagy-dependent pathway.
    Cho W; Oh H; Choi SW; Abd El-Aty AM; Birdal O; Jeong JH; Song JH; Jung TW
    Biochem Biophys Res Commun; 2023 Nov; 682():104-110. PubMed ID: 37806247
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metformin modulates apoptosis and cell signaling of human podocytes under high glucose conditions.
    Langer S; Kreutz R; Eisenreich A
    J Nephrol; 2016 Dec; 29(6):765-773. PubMed ID: 26733332
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An In Vitro Method to Analyze Glucose Uptake in Podocytes.
    Lay AC; Coward RJ
    Methods Mol Biol; 2020; 2067():139-143. PubMed ID: 31701450
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High glucose provokes microvesicles generation from glomerular podocytes via NOX4/ROS pathway.
    Li M; Zhang T; Wu X; Chen Y; Sun L
    Biosci Rep; 2019 Nov; 39(11):. PubMed ID: 31664454
    [TBL] [Abstract][Full Text] [Related]  

  • 39. NOD2 promotes renal injury by exacerbating inflammation and podocyte insulin resistance in diabetic nephropathy.
    Du P; Fan B; Han H; Zhen J; Shang J; Wang X; Li X; Shi W; Tang W; Bao C; Wang Z; Zhang Y; Zhang B; Wei X; Yi F
    Kidney Int; 2013 Aug; 84(2):265-76. PubMed ID: 23594678
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Faster lipid β-oxidation rate by acetyl-CoA carboxylase 2 inhibition alleviates high-glucose-induced insulin resistance via SIRT1/PGC-1α in human podocytes.
    Wang Q; Zhao B; Zhang J; Sun J; Wang S; Zhang X; Xu Y; Wang R
    J Biochem Mol Toxicol; 2021 Jul; 35(7):e22797. PubMed ID: 33957017
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.